Geotechnical Engineering Report

Cottonwood Residential Development Walla Walla County Parcel: 360604120029 Walla Walla, Washington

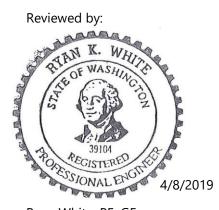
Prepared for: Hayden Homes LLC 2464 SW Glacier Place, Suite 110 Redmond, Oregon 97756

April 8, 2019 PBS Project HDJ4203.000

4412 SW CORBETT AVENUE PORTLAND, OR 97239 503.248.1939 MAIN 866.727.0140 FAX PBSUSA.COM

Geotechnical Engineering Report

Cottonwood Residential Development Walla Walla County Parcel: 360604120029 Walla Walla, Washington


Prepared for: Hayden Homes LLC 2464 SW Glacier Place, Suite 110 Redmond, Oregon 97756

April 8, 2019 PBS Project HDJ4203.000

Prepared by:

DANDEIBIN

Dave Eibert, GIT Staff Geologist

Ryan White, PE, GE Geotechnical Engineering Group Manager

© 2019 PBS Engineering and Environmental Inc.

Table of Contents

1	INT	RODUCTION	1
	1.1	General	1
	1.2	Purpose and Scope	1
		1.2.1 Literature and Records Review	1
		1.2.2 Subsurface Explorations	1
		1.2.3 Field Infiltration Testing	1
		1.2.4 Soils Testing	
		1.2.5 Geotechnical Engineering Analysis	1
		1.2.6 Report Preparation	
	1.3	Project Understanding	2
2	SITI	E CONDITIONS	2
	2.1	Surface Description	2
	2.2	Geologic Setting	2
	2.3	Subsurface Conditions	3
	2.4	Groundwater	4
	2.5	Infiltration Testing	4
3	CON	NCLUSIONS AND RECOMMENDATIONS	4
	3.1	Geotechnical Design Considerations	4
	3.2	Seismic Design Considerations	
		3.2.1 Code-Based Seismic Design Parameters	5
		3.2.2 Liquefaction Potential	5
	3.3	Ground Moisture	
	3.4	Recommended Pavement Sections	5
4	COI	NSTRUCTION RECOMMENDATIONS	6
	4.1	Site Preparation	6
		4.1.1 Proofrolling/Subgrade Verification	6
		4.1.2 Wet/Freezing Weather and Wet Soil Conditions	6
		4.1.3 Erosion Protection	7
		4.1.4 Slopes	
	4.2	Excavation	7
	4.3	Structural Fill	
		4.3.1 On-Site Soil	
		4.3.5 Trench Backfill	
		4.3.6 Stabilization Material	9
5	ADI	DITIONAL SERVICES AND CONSTRUCTION OBSERVATIONS	9
6	LIM	ITATIONS	10
7	REF	ERENCES	11

Supporting Data

TABLES

Table 1. Infiltration Test Results Table 2. 2015 IBC Seismic Design Parameters Table 3. Minimum AC Pavement Sections

FIGURES

Figure 1. Vicinity Map Figure 2. Site Plan

APPENDICES

Appendix A: Field Explorations

Table A-1. Terminology Used to Describe Soil Table A-2. Key to Test Pit Log Symbols Figures A1–A30. Logs for Test Pits TP-1 through TP-30

Appendix B: Laboratory Testing

Figure B1 Summary of Laboratory Data

1 INTRODUCTION

1.1 General

This report presents results of PBS Engineering and Environmental Inc. (PBS) geotechnical engineering services for the proposed residential infrastructure development located at Walla Walla County Parcel: 360604120029 in Walla Walla (site). The general site location is shown on the Vicinity Map, Figure 1. The locations of PBS' explorations in relation to existing and proposed site features are shown on the Site Plan, Figure 2.

1.2 Purpose and Scope

The purpose of PBS' services was to develop geotechnical design and construction recommendations in support of the planned new residential infrastructure development. This was accomplished by performing the following scope of services.

1.2.1 Literature and Records Review

PBS reviewed various published geologic maps of the area for information regarding geologic conditions and hazards at or near the site. PBS also reviewed previously completed reports for the project site and vicinity.

1.2.2 Subsurface Explorations

PBS excavated 30 test pits within the proposed residential development parcel to depths of up to 16.5 feet below the existing ground surface (bgs). The test pits were logged and representative soil samples collected by a member of the PBS geotechnical engineering staff. Interpreted test pit logs are included as Figures A1 through A30 in Appendix A, Field Explorations.

1.2.3 Field Infiltration Testing

Four open-hole, falling-head field infiltration tests were completed in test pits TP-2, TP-5, TP-23, and TP-28 within the proposed development at depths between 5 and 6 feet bgs. Infiltration testing was monitored by PBS geotechnical engineering staff.

1.2.4 Soils Testing

Soil samples were returned to our laboratory and classified in general accordance with the Unified Soil Classification System (ASTM D2487) and/or the Visual-Manual Procedure (ASTM D2488). Laboratory tests included natural moisture contents and grain-size analyses. Laboratory test results are included in the exploration logs in Appendix A, Field Explorations; and in Appendix B, Laboratory Testing.

1.2.5 Geotechnical Engineering Analysis

Data collected during the subsurface exploration, literature research, and testing were used to develop site-specific geotechnical design parameters and construction recommendations.

1.2.6 Report Preparation

This Geotechnical Engineering Report summarizes the results of our explorations, testing, and analyses, including information relating to the following:

- Field exploration logs and site plan showing approximate exploration locations
- Laboratory test results
- Infiltration test results
- Groundwater considerations
- Liquefaction potential
- Earthwork and grading, cut, and fill recommendations:

- o Structural fill materials and preparation, and reuse of on-site soils
- Wet weather considerations
- Utility trench excavation and backfill requirements
- Temporary and permanent slope inclinations
- Seismic design criteria in accordance with the current International Building Code (IBC) with State of Washington amendments
- Pavement subgrade preparation recommendations
- Recommended asphalt concrete (AC) pavement sections

1.3 Project Understanding

PBS understands the client plans to develop the approximately 105-acre property for the purpose of subdividing the property and constructing single-family residential homes. Site improvements will consist of cuts of approximately 14 feet and fills of approximately 22 feet, stormwater infiltration facilities, asphalt concrete access roads, and underground utility lines. This investigation will not provide assessments of individual residential lots.

2 SITE CONDITIONS

2.1 Surface Description

The site can generally be described as a polygon. The longer, eastern margin is oriented north-south and is relatively straight, while the western margin is shorter, with concave sides. It is bordered to the east by Kendall Road, to the south by Cottonwood Road, to the southwest by Powerline Road, to the west by residential properties, and to the north by farmland and adjoining residential properties. The site is located on gently rolling hills and currently used for farming. Review of available topographic data indicate the site slopes down to the west, with ground surface elevations ranging from a maximum of approximately 1020 feet above mean sea level (amsl) at the eastern portion of the site to 970 feet amsl in the northern and western portions of the site (NAVD88; USGS, 2018). Outside of the site, the ground surface follows the same general rolling topography, with higher elevations to the east and lower elevations to the west before reaching shallow drainages near the city limits of Walla Walla, Washington.

2.2 Geologic Setting

The site is located along the southern margin of the Columbia Basin, a geologic province of Eastern Washington that is separated from the Deschutes-Columbia Plateau and Blue Mountains Provinces of Oregon. The province is composed primarily of volcanic basement rocks of the Columbia River Basalt Group (CRBG) subdivided into smaller recognizable flows and members that are overlain by Quaternary deposits (Derkey et al., 2006). The older basalt flows were generated by volcanic eruptions between 16.7 million years ago (Ma) and 5.5 Ma from fissures located in eastern Oregon, eastern Washington, and western Idaho.

The Pasco-Walla Walla (PWW) basin is structurally controlled by strike-slip faulting with relative down drop and upthrown blocks leading the basin to become one of the lowest points within the greater Columbia Basin (Derkey et al., 2006). Other structural features that influence the sedimentation in the PWW Basin include the Horse Heaven Anticline and the Wallula Fault Zone (Schuster, 1994). As Tertiary volcanic rocks of the CRBG were uplifted and deformed, near the present-day Washington-Oregon border, they produced Horse Heaven Hills that formed the southwestern margin of the PWW Basin. Incision of the ancestral Columbia River continued through this gradual uplift.

Horse Heaven Hills played a significant role in sediment deposition during the Late Pleistocene cataclysmic Missoula glacial outburst flooding events. Meltwater form Glacial Lake Missoula was released in the late Pleistocene and rushed across eastern Washington until reaching the water gap of Horse Heaven Hills. Here, floodwaters became backed up against the southwestern boundary of the PWW basin before draining into the Columbia River Gorge. Slack water deposits of fine-grained material are widespread in the PWW basin and greater Columbia Basin.

The site is underlain by windblown loess. These deposits are categorized as silt, fine-grained sand, and clay capable of being mobilized up eolian forces after deposition of fine-grained material within low-lying areas and after the draining of the PWW basin via the Columbia River Gorge. Other unconsolidated Quaternary alluvium of sand, silt, clay, and gravel can be encountered in small stream and creek channels on at the site. The site is underlain at depth by Miocene age Frenchman Springs Member of the Wanapum Basalt, a subdivided basalt flow of the CRBG. One Quaternary fault is identified approximately 4.5 kilometers east of the site as the northeast trending Buroker fault (USGS No. 578a).

2.3 Subsurface Conditions

The site was explored by excavating 30 test pits, designated TP-1 through TP-30, to depths of 11.5 to 16.5 feet bgs. The excavation was performed by Braden and Nelson, Inc., of Walla Walla, Washington, using a track-mounted Cat 314 excavator and 42-inch toothed bucket.

PBS has summarized the subsurface units as follows:

TILL ZONE (ML):	Dark brown silt with fine roots was encountered from the ground surface to between 1 and 3 feet bgs in all test pits.
SILT WITH SAND (ML):	Silt with sand was encountered in all test pits below the till zone. It was generally medium stiff to very stiff, dark brown to light brown, exhibited no to low plasticity, contained fine-grained sand and calcite stringers, and produced a vigorous chemical reaction when introduced to hydrochloric acid below approximately 4 feet bgs.
SILTY SAND (SM):	Silty sand was encountered in test pits TP-9 between 4 to 8 feet bgs, TP-16 between 9 to 12 feet bgs, and TP-20 between 10 to 11.5 feet bgs. This material was dark brown to light brown, non-plastic, fine- to medium-grained sand, with some calcite stringers in TP-16 and -20.
LEAN CLAY (CL):	Lean clay was encountered in TP-11 from a depth of 14 to 16 feet bgs. This material was brown to gray, moist, exhibited medium plasticity, and had oxidation features.
GRAVELLY SILT WITH SAND (ML):	Silt with varying amounts of sand and gravel was encountered in test pit TP-2 at 12 feet bgs, TP-8 at 16 feet bgs, TP-11 at 16 feet bgs, TP-14 at 8.5 feet bgs, and TP-21 at 9 feet bgs, to termination depth in these test pits. The material was light brown to dark brown, moist to wet, contained fine- to coarse-grained sand, and fine- to coarse-grained subrounded gravel, and low to medium plasticity fines.
ASH:	Ash was encountered in test pit TP-18 from 6.5 to 8 feet bgs and within limited lenses in other test pits throughout the site. It was white, dry to moist, exhibited no plasticity, and contained fine-grained sand.

2.4 Groundwater

Limited groundwater seepage was encountered during our explorations in TP-11 and TP-28 at approximately 12 and 11.5 feet bgs, respectively. Based on a review of regional groundwater logs available from the Washington State Department of Ecology, we anticipate that the static groundwater level is present at a depth greater than 50 feet bgs. Please note that groundwater levels can fluctuate during the year depending on climate, irrigation season, extended periods of precipitation, drought, and other factors.

2.5 Infiltration Testing

PBS completed four open-hole, falling head infiltration tests in test pits TP-2, TP-5, TP-23, and TP-28, at depths of approximately 5 feet bgs. The infiltration tests were conducted in general accordance with the Stormwater Management Manual for Eastern Washington procedures. The test pits were excavated and filled with approximately 2 to 3.5 feet of water. After a period of saturation, the water level was then measured initially and at regular, timed intervals. Results of our field infiltration testing are presented in Table 1.

Test Location	Depth (feet bgs)	Field Measured Infiltration Rate (in/hr)	Soil Classification			
TP-2	5.5	1	SILT with sand (ML)			
TP-5	5.5	2	SILT with sand (ML)			
TP-23	5.3	1.5	SILT with sand (ML)			
TP-28	5	2.5	SILT with sand (ML)			

Table 1. Infiltration Test Results

The infiltration rates listed in Table 1 are not permeabilities/hydraulic conductivities, but field-measured rates, and do not include correction factors related to long-term infiltration rates. The design engineer should determine the appropriate correction factors to account for the planned level of pre-treatment, maintenance, vegetation, siltation, etc. Field-measured infiltration rates are typically reduced by a minimum factor of 2 to 4 for use in design.

Soil types can vary significantly over relatively short distances. The infiltration rates noted above are representative of one discrete location and depth. Installation of infiltration systems within the layer the field rate was measured is considered critical to proper performance of the systems.

3 CONCLUSIONS AND RECOMMENDATIONS

3.1 Geotechnical Design Considerations

This report was prepared to address design and construction for site grading and infrastructure and is not intended for use in development of individual lots or residential foundations.

Subsurface conditions at the site consist of silt with variable amounts of sand. Based on our observations and analyses, conventional foundation support on shallow spread footings is feasible for the proposed residential structures. Excavation with conventional equipment is feasible at the site.

Preliminary grading plans include cuts of up to approximately 14 feet and fills of up to approximately 22 feet. Once completed, proposed site grading should be reviewed for conformance with the geotechnical-related recommendations and updated recommendations provided, as necessary.

3.2 Seismic Design Considerations

3.2.1 Code-Based Seismic Design Parameters

According to the Site Class Map of Benton County, Washington (Palmer, 2004), the site is located within an area classified as Site Class D, characterizing the profile as stiff soil. Based on subsurface conditions encountered in our explorations combined with DCP blow counts, Site Class D is appropriate for use in design. The seismic design criteria, in accordance with the 2015 International Building Code IBC with state of Washington amendments, are summarized in Table 2.

Parameter	Short Period	1 Second		
Maximum Credible Earthquake Spectral Acceleration	S _s = 0.83 g	S ₁ = 0.35 g		
Site Class	[)		
Site Coefficient	$F_{a} = 1.17$	$F_v = 1.69$		
Adjusted Spectral Acceleration	S _{MS} = 0.97 g	S _{M1} = 0.60 g		
Design Spectral Response Acceleration Parameters	S _{DS} = 0.65 g	S _{D1} = 0.40 g		

Table	2.	2015	IBC	Seismic	Design	Parameters
-------	----	------	-----	---------	--------	------------

g= Acceleration due to gravity

3.2.2 Liquefaction Potential

Liquefaction is defined as a decrease in the shear resistance of loose, saturated, cohesionless soil (e.g., sand) or low plasticity silt soils, due to the buildup of excess pore pressures generated during an earthquake. This results in a temporary transformation of the soil deposit into a viscous fluid. Liquefaction can result in ground settlement, foundation bearing capacity failure, and lateral spreading of ground.

Based on a review of the *Washington Division of Geology and Earth Resources website,* the site is shown as having a low to moderate liquefaction hazard. However, based on the soil types, relative density of site soils encountered in our explorations, and depth to groundwater, our current opinion is that the risk of structurally damaging liquefaction settlement at the site is low. Subsequently, the risk of structurally damaging lateral spreading is also low.

3.3 Ground Moisture

The perimeter ground surface and hard-scape should be sloped to drain away from all structures and away from adjacent slopes. Gutters should be tight-lined to a suitable discharge and maintained as free-flowing. All crawl spaces should be adequately ventilated and sloped to drain to a suitable, exterior discharge.

3.4 Recommended Pavement Sections

The provided pavement recommendations were developed based on our experience with similar developments and reference the associated Washington Department of Transportation (WSDOT) specifications for construction.

The minimum recommended pavement section thicknesses are provided in Table 3. Depending on weather conditions at the time of construction, a thicker aggregate base course section could be required to support construction traffic during preparation and placement of the pavement section.

Traffic Loading	AC (inches)	Base Course (inches)	Subgrade		
Drive Lanes and Access	2	0	Stiff subgrade as verified by		
Roads	5	3	PBS personnel*		

Table 3. Minimum	AC Pavement	Sections
------------------	-------------	----------

* Subgrade must pass proofroll

The asphalt cement binder should be selected following WSDOT SS 9-02.1(4) – Performance Graded Asphalt Binder. The AC should consist of $\frac{1}{2}$ -inch hot mix asphalt (HMA) with a maximum lift thickness of 3 inches. The AC should conform to WSDOT SS 5-04.3(7)A – Mix Design, WSDOT SS 9-03.8(2) – HMA Test Requirements, and WSDOT SS 9-03.8(6) – HMA Proportions of Materials. The AC should be compacted to 91 percent of the maximum theoretical density (Rice value) of the mix, as determined in accordance with ASTM D2041, following the guidelines set in WSDOT SS 5-04.3(10) – Compaction.

Heavy construction traffic on new pavements or partial pavement sections (such as base course over the prepared subgrade) will likely exceed the design loads and could potentially damage or shorten the pavement life; therefore, we recommend construction traffic not be allowed on new pavements, or that the contractor take appropriate precautions to protect the subgrade and pavement during construction.

If construction traffic is to be allowed on newly constructed road sections, an allowance for this additional traffic will need to be made in the design pavement section.

4 CONSTRUCTION RECOMMENDATIONS

4.1 Site Preparation

Construction of the proposed development will involve clearing and grubbing of the existing vegetation or demolition of possible existing structures. Underground utility lines or other abandoned structural elements should also be removed. The voids resulting from removal of foundations or loose soil in utility lines should be backfilled with compacted structural fill. The base of these excavations should be excavated to firm native subgrade before filling, with sides sloped at a minimum of 1H:1V (horizontal to vertical) to allow for uniform compaction. Materials generated during demolition should be transported off site or stockpiled in areas designated by the owner's representative. Till zone soils should be scarified and recompacted as structural fill or removed from beneath fill areas.

4.1.1 Proofrolling/Subgrade Verification

Following site preparation and prior to placing aggregate base over shallow foundation, floor slab, and pavement subgrades, the exposed subgrade should be evaluated either by proofrolling or another method of subgrade verification. The subgrade should be proofrolled with a fully loaded dump truck or similar heavy, rubber-tire construction equipment to identify unsuitable areas. If evaluation of the subgrades occurs during wet conditions, or if proofrolling the subgrades will result in disturbance, they should be evaluated by PBS using a steel foundation probe. We recommend that PBS be retained to observe the proofrolling and perform the subgrade verifications. Unsuitable areas identified during the field evaluation should be compacted to a firm condition or be excavated and replaced with structural fill.

4.1.2 Wet/Freezing Weather and Wet Soil Conditions

Due to the presence of fine-grained silt and sands in the near-surface materials at the site, construction equipment may have difficulty operating on the near-surface soils when the moisture content of the surface soil is more than a few percentage points above the optimum moisture required for compaction. Soils

disturbed during site preparation activities, or unsuitable areas identified during proofrolling or probing, should be removed and replaced with compacted structural fill.

Site earthwork and subgrade preparation should not be completed during freezing conditions, except for mass excavation to the subgrade design elevations. We recommend the earthwork construction at the site be performed during the dry season.

Protection of the subgrade is the responsibility of the contractor. Construction of granular haul roads to the project site entrance may help reduce further damage to the pavement and disturbance of site soils. The actual thickness of haul roads and staging areas should be based on the contractors' approach to site development, and the amount and type of construction traffic. The imported granular material should be placed in one lift over the prepared undisturbed subgrade and compacted using a smooth-drum, non-vibratory roller. A geotextile fabric should be used to separate the subgrade from the imported granular material in areas of repeated construction traffic. Depending on site conditions, the geotextile should meet Washington State Department of Transportation (WSDOT) SS 9-33.2 – Geosynthetic Properties for soil separation or stabilization. The geotextile should be installed in conformance with WSDOT SS 2-12.3 – Construction Geosynthetic (Construction Requirements) and, as applicable, WSDOT SS 2-12.3(2) – Separation or WSDOT SS 2-12.3(3) – Stabilization.

4.1.3 Erosion Protection

Site soils are easily eroded by wind and water. Therefore, erosion control measures should be planned and in place prior to construction, with native vegetation left in place outside the grading limits. Erosion protection should be provided in accordance with Walla Walla County standards. Erosion can be reduced with the use of silt fences, hay bales, and zones of natural growth. Additionally, cut and fill slopes should be protected immediately upon completion. All stormwater should be tight-lined to suitable discharges such as approved, protected outlets and infiltration systems.

4.1.4 Slopes

All temporary cut slopes should be excavated with a smooth bucket excavator with the surface repaired if disturbed. In addition, upslope surface runoff should be rerouted so that it does not run down the face of the slopes. Equipment should not be allowed to induce vibration or infiltrate water above the slopes, and no surcharges are allowed within 25 feet of the slope crest.

Permanent cut slopes up to 14 feet high can be inclined at 2H:1V in the medium stiff or better silt. The presence of slow seepage may require use of a rock blanket or a suitably revegetated reinforced erosion control blanket. Seepage may also require additional erosion control measures, such as additional drainage elements, and/or flatter slopes, and PBS should be consulted. Exposed soils that are soft or loose may also require such measures. Erosion control is critical to maintaining slopes.

Permanent fill slopes up to 22 feet high can be inclined at 2H:1V in on-site structural fill. The slope should be over-built, slightly steeper than the design slope inclination with the slope cut back into to compacted structural fill at the design slope inclination. Fill slopes should be protected as described for cut slopes

4.2 Excavation

The near-surface soils at the site can be excavated with conventional earthwork equipment. Sloughing and caving should be anticipated. All excavations should be made in accordance with applicable Occupational Safety and Health Administration (OSHA) and state regulations. The contractor is solely responsible for adherence to the OSHA requirements. Trench cuts should stand relatively vertical to a depth of approximately

4 feet bgs, provided no groundwater seepage is present in the trench walls. Open excavation techniques may be used provided the excavation is configured in accordance with the OSHA requirements, groundwater seepage is not present, and with the understanding that some sloughing may occur. Trenches/excavations should be flattened if sloughing occurs or seepage is present. Use of a trench shield or other approved temporary shoring is recommended if vertical walls are desired for cuts deeper than 4 feet bgs. If dewatering is used, we recommend that the type and design of the dewatering system be the responsibility of the contractor, who is in the best position to choose systems that fit the overall plan of operation.

4.3 Structural Fill

Currently proposed site grading may include cuts of up to 14 feet and fills of up to 22 feet within the proposed site. Structural fill should be placed over subgrade that has been prepared in conformance with the Site Preparation and Wet/Freezing Weather and Wet Soil Conditions sections of this report. Structural fill material should consist of relatively well-graded soil, or an approved rock product that is free of organic material and debris, and contains particles not greater than 4 inches nominal dimension.

The suitability of soil for use as compacted structural fill will depend on the gradation and moisture content of the soil when it is placed. As the amount of fines (material finer than the US Standard No. 200 Sieve) increases, soil becomes increasingly sensitive to small changes in moisture content and compaction becomes more difficult to achieve. Soils containing more than about 5 percent fines cannot consistently be compacted to a dense, non-yielding condition when the water content is significantly greater (or significantly less) than optimum.

If fill and excavated material will be placed on slopes steeper than 5H:1V, these must be keyed/benched into the existing slopes and installed in horizontal lifts. Vertical steps between benches should be approximately 2 feet.

4.3.1 On-Site Soil

On-site soils encountered in our explorations are generally suitable for placement as structural fill during moderate, dry weather when moisture content can be maintained by air drying and/or addition of water. The fine-grained fraction of the site soils are moisture sensitive, and during wet weather, may become unworkable because of excess moisture content. In order to reduce moisture content, some aerating and drying of fine-grained soils may be required. The material should be placed in lifts with a maximum uncompacted thickness of approximately 8 inches and compacted to at least 92 percent of the maximum dry density, as determined by ASTM D1557 (modified proctor).

The till zone soils should be scarified and recompacted as required for structural fill.

4.3.2 Imported Granular Materials

Imported granular material used during periods of wet weather or for haul roads, building pad subgrades, staging areas, etc., should be pit or quarry run rock, crushed rock, or crushed gravel and sand, and should meet the specifications provided in WSDOT SS 9-03.14(2) – Select Borrow. In addition, the imported granular material should be fairly well graded between coarse and fine, and of the fraction passing the US Standard No. 4 Sieve, less than 5 percent by dry weight should pass the US Standard No. 200 Sieve.

Imported granular material should be placed in lifts with a maximum uncompacted thickness of 9 inches and be compacted to not less than 95 percent of the maximum dry density, as determined by ASTM D1557.

4.3.3 Base Aggregate

Base aggregate for floor slabs and beneath pavements should be clean crushed rock or crushed gravel. The base aggregate should contain no deleterious materials, meet specifications provided in WSDOT SS 9-03.9(3) – Crushed Surfacing Base Course, and have less than 5 percent (by dry weight) passing the US Standard No. 200 Sieve. The imported granular material should be placed in one lift and compacted to at least 95 percent of the maximum dry density, as determined by ASTM D1557.

4.3.4 Foundation Base Aggregate

Imported granular material placed at the base of excavations for spread footings, slabs-on-grade, and other below-grade structures should be clean, crushed rock or crushed gravel, and sand that is fairly well graded between coarse and fine. The granular materials should contain no deleterious materials, have a maximum particle size of 1½ inch, and meet WSDOT SS 9-03.12(1)A – Gravel Backfill for Foundations (Class A). The imported granular material should be placed in one lift and compacted to not less than 95 percent of the maximum dry density, as determined by ASTM D1557.

4.3.5 Trench Backfill

Trench backfill placed beneath, adjacent to, and for at least 2 feet above utility lines (i.e., the pipe zone) should consist of well-graded granular material with a maximum particle size of 1 inch and less than 10 percent by dry weight passing the US Standard No. 200 Sieve, and should meet the standards prescribed by WSDOT SS 9-03.12(3) – Gravel Backfill for Pipe Zone Bedding. The pipe zone backfill should be compacted to at least 90 percent of the maximum dry density as determined by ASTM D1557, or as required by the pipe manufacturer or local building department.

Within pavement areas or beneath building pads, the remainder of the trench backfill should consist of wellgraded granular material with a maximum particle size of 1½ inches, less than 10 percent by dry weight passing the US Standard No. 200 Sieve, and should meet standards prescribed by WSDOT SS 9-03.19 – Bank Run Gravel for Trench Backfill. This material should be compacted to at least 92 percent of the maximum dry density, as determined by ASTM D1557, or as required by the pipe manufacturer or local building department. The upper 2 feet of the trench backfill should be compacted to at least 95 percent of the maximum dry density, as determined by ASTM D1557.

Outside of structural improvement areas (e.g., roadway alignments or building pads), trench backfill placed above the pipe zone should consist of excavated material free of wood waste, debris, clods, or rocks greater than 6 inches in diameter and meet WSDOT SS 9-03.14 – Borrow and WSDOT SS 9-03.15 – Native Material for Trench Backfill. This general trench backfill should be compacted to at least 90 percent of the maximum dry density, as determined by ASTM D1557, or as required by the pipe manufacturer or local building department.

4.3.6 Stabilization Material

Stabilization rock should consist of pit or quarry run rock that is well-graded, angular, crushed rock consisting of 4- or 6-inch-minus material with less than 5 percent passing the US Standard No. 4 Sieve. The material should be free of organic matter and other deleterious material. WSDOT SS 9-13.1(5) – Quarry Spalls can be used as a general specification for this material with the stipulation of limiting the maximum size to 6 inches.

5 ADDITIONAL SERVICES AND CONSTRUCTION OBSERVATIONS

In most cases, other services beyond completion of a final geotechnical engineering report are necessary or desirable to complete the project. Occasionally, conditions or circumstances arise that require additional work that was not anticipated when the geotechnical report was written. PBS offers a range of environmental, geological, geotechnical, and construction services to suit the varying needs of our clients.

PBS should be retained to review the plans and specifications for this project before they are finalized. Such a review allows us to verify that our recommendations and concerns have been adequately addressed in the design.

Satisfactory earthwork performance depends on the quality of construction. Sufficient observation of the contractor's activities is a key part of determining that the work is completed in accordance with the construction drawings and specifications. We recommend that PBS be retained to observe general excavation, stripping, fill placement, footing subgrades, and/or pile installation. Subsurface conditions observed during construction should be compared with those encountered during the subsurface explorations. Recognition of changed conditions requires experience; therefore, qualified personnel should visit the site with sufficient frequency to detect whether subsurface conditions change significantly from those anticipated.

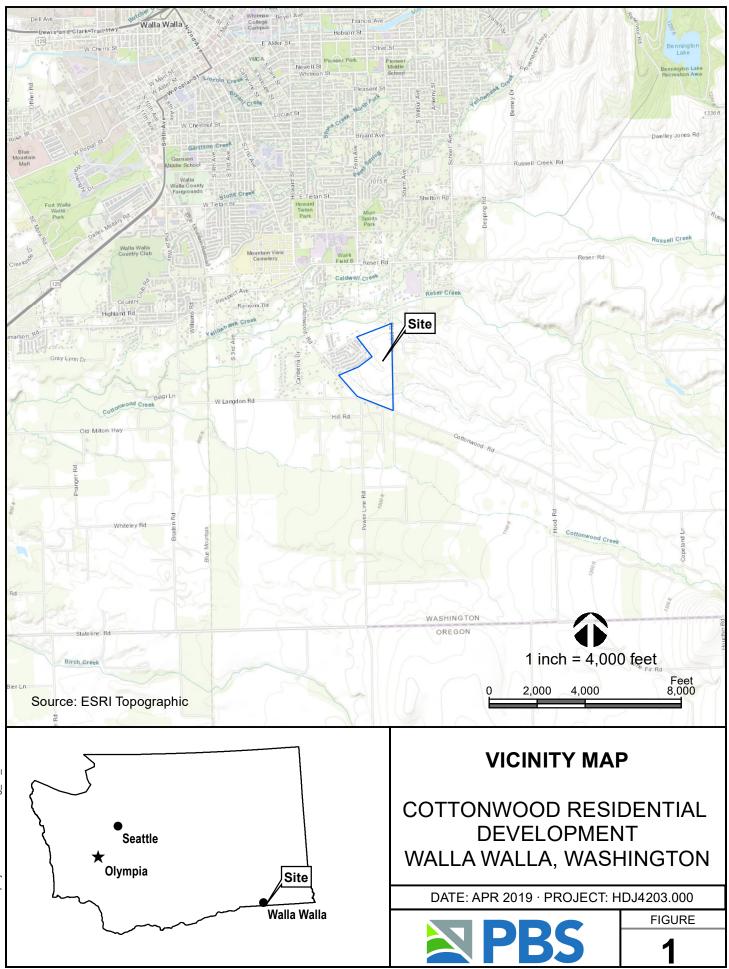
6 LIMITATIONS

This report has been prepared for the exclusive use of the addressee, and their architects and engineers, for aiding in the design and construction of the proposed development and is not to be relied upon by other parties. It is not to be photographed, photocopied, or similarly reproduced, in total or in part, without express written consent of the client and PBS. It is the addressee's responsibility to provide this report to the appropriate design professionals, building officials, and contractors to ensure correct implementation of the recommendations.

The opinions, comments, and conclusions presented in this report are based upon information derived from our literature review, field explorations, laboratory testing, and engineering analyses. It is possible that soil, rock, or groundwater conditions could vary between or beyond the points explored. If soil, rock, or groundwater conditions are encountered during construction that differ from those described herein, the client is responsible for ensuring that PBS is notified immediately so that we may reevaluate the recommendations of this report.

Unanticipated fill, soil and rock conditions, and seasonal soil moisture and groundwater variations are commonly encountered and cannot be fully determined by merely taking soil samples or completing explorations such as test pits. Such variations may result in changes to our recommendations and may require additional funds for expenses to attain a properly constructed project; therefore, we recommend a contingency fund to accommodate such potential extra costs.

The scope of work for this subsurface exploration and geotechnical report did not include environmental assessments or evaluations regarding the presence or absence of wetlands or hazardous substances in the soil, surface water, or groundwater at this site.

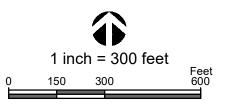

If there is a substantial lapse of time between the submission of this report and the start of work at the site, if conditions have changed due to natural causes or construction operations at or adjacent to the site, or if the basic project scheme is significantly modified from that assumed, this report should be reviewed to determine the applicability of the conclusions and recommendations presented herein. Land use, site conditions (both on and off site), or other factors may change over time and could materially affect our findings; therefore, this report should not be relied upon after three years from its issue, or in the event that the site conditions change.

7 REFERENCES

ASCE. (2010). Minimum Design Loads for Buildings and Other Structures (ASCE 7-10).

- Derkey, R. E., Stradling, D. F., Lindsey, K. A., and Tolan, T. L. (2006). Geologic map of the College Place and Walla Walla 7.5-minute quadrangle, Walla Walla County, Washington, and Umatilla County, Oregon: Washington Division of Geology and Earth Resources, Geologic Map GM-62, scale 1:24,000
- IBC. (2015). International Building Code. Country Club Hills, IL: International Code Council, Inc. Washington State Amendments to the International Building Code 2009 Edition, Effective July 1, 2010.
- Palmer, S. P, Magsino, S. L, Bilderback, E. L., Poelstra, J. L, Folger, D. S., Niggeman, R. A., (2004). Site Class Map of Benton County, Washington. Washington State Department of Natural Resources.
- Schuster, J. E. (1994). Geologic map of the Walla Walla 1:100,000 quadrangle, Washington: Washington Division of Geology and Earth Resources, Open File Report 94-3, scale 1:100,000.
- US Geological Survey (2018) [Interactive Map] The National Map Viewer. US Department of the Interior and US Geological Survey. Accessed March 14, 2019 from https://viewer.nationalmap.gov/advanced-viewer/
- Washington State Department of Ecology (WDE). (2004). Stormwater Management Manual for Eastern Washington, publication number 04-10-076.
- State of Washington Department of Ecology (WDE). (2019). [Interactive Map]. Washington State Well Viewer. Accessed on April 2019 from https://fortress.wa.gov/ecy/wellconstruction/map/wclswebMap/default.aspx.
- Washington State Department of Transportation (WSDOT SS). (2018). Standard Specifications for Road, Bridge, and Municipal Construction, M 41-10, Olympia, Washington.

Figures



EXPLANATION

-

- TP-1 Test pit name and approximate location
- TP-2 Test pit name and approximate location with infiltration test

Approximate property boundary

SOURCES: ESRI World Imagery Basemap

SITE PLAN

COTTONWOOD RESIDENTIAL DEVELOPMENT WALLA WALLA, WASHINGTON

DATE:APR 2019 · PROJECT: HDJ4203.000

BS

P

Appendix A: Field Explorations

A1 GENERAL

PBS explored subsurface conditions at the project site by excavating 30 test pits to depths of up to approximately 16.5 feet bgs on February 25, 27, and March 1, 2019. The approximate locations of the explorations are shown on Figure 2, Site Plan. The procedures used to advance the test pits, collect samples, and other field techniques are described in detail in the following paragraphs. Unless otherwise noted, all soil sampling and classification procedures followed engineering practices in general accordance with relevant ASTM procedures. "General accordance" means that certain local drilling/excavation and descriptive practices and methodologies have been followed.

A2 TEST PITS

A2.1 Excavation

Test pits were excavated using a CAT 314 excavator equipped with a 42-inch toothed bucket provided and operated by Braden and Nelson, Inc., of Walla Walla, Washington. The test pits were observed by a member of the PBS geotechnical staff, who maintained a detailed log of the subsurface conditions and materials encountered during the course of the work.

A2.2 Sampling

Representative disturbed samples were taken at selected depths in the test pits. The disturbed soil samples were examined by a member of the PBS geotechnical staff and sealed in plastic bags for further examination.

A2.3 Test Pit Logs

The test pit logs show the various types of materials that were encountered in the excavations and the depths where the materials and/or characteristics of these materials changed, although the changes may be gradual. Where material types and descriptions changed between samples, the contacts were interpreted. The types of samples taken during excavation, along with their sample identification number, are shown to the right of the classification of materials. The natural water (moisture) contents are shown farther to the right. Measured seepage levels, if observed, are noted in the column to the right.

A3 MATERIAL DESCRIPTION

Initially, samples were classified visually in the field. Consistency, color, relative moisture, degree of plasticity, and other distinguishing characteristics of the soil samples were noted. Afterward, the samples were reexamined in the PBS laboratory, various standard classification tests were conducted, and the field classifications were modified where necessary. The terminology used in the soil classifications and other modifiers are defined in Table A-1, Terminology Used to Describe Soil.

Table A-1 Terminology Used to Describe Soil

1 of 2

Soil Descriptions

Soils exist in mixtures with varying proportions of components. The predominant soil, i.e., greater than 50 percent based on total dry weight, is the primary soil type and is capitalized in our log descriptions (SAND, GRAVEL, SILT, or CLAY). Smaller percentages of other constituents in the soil mixture are indicated by use of modifier words in general accordance with the ASTM D2488-06 Visual-Manual Procedure. "General Accordance" means that certain local and common descriptive practices may have been followed. In accordance with ASTM D2488-06, group symbols (such as GP or CH) are applied on the portion of soil passing the 3-inch (75mm) sieve based on visual examination. The following describes the use of soil names and modifying terms used to describe fine- and coarse-grained soils.

Fine-Grained Soils (50% or greater fines passing 0.075 mm, No. 200 sieve)

The primary soil type, i.e., SILT or CLAY is designated through visual-manual procedures to evaluate soil toughness, dilatency, dry strength, and plasticity. The following outlines the terminology used to describe fine-grained soils, and varies from ASTM D2488 terminology in the use of some common terms.

Primary	soil NAME, Symbols	Plasticity Description	Plasticity Index (PI)	
SILT (ML & MH)	CLAY (CL & CH)	ORGANIC SOIL (OL & OH)		
SILT		Organic SILT	Non-plastic	0 – 3
SILT		Organic SILT	Low plasticity	4 - 10
SILT/Elastic SILT	Lean CLAY	Organic SILT/ Organic CLAY	Medium Plasticity	10 – 20
Elastic SILT	Lean/Fat CLAY	Organic CLAY	High Plasticity	20 - 40
Elastic SILT	Fat CLAY	Organic CLAY	Very Plastic	>40

Modifying terms describing secondary constituents, estimated to 5 percent increments, are applied as follows:

Description	% Con	nposition
With Sand	% Sand ≥ % Gravel	15% to 25% also No. 200
With Gravel	% Sand < % Gravel	— 15% to 25% plus No. 200
Sandy	% Sand ≥ % Gravel	(200) to 500 rates No. 200
Gravelly	% Sand < % Gravel	≤ 30% to 50% plus No. 200

Borderline Symbols, for example CH/MH, are used when soils are not distinctly in one category or when variable soil units contain more than one soil type. **Dual Symbols**, for example CL-ML, are used when two symbols are required in accordance with ASTM D2488.

Soil Consistency terms are applied to fine-grained, plastic soils (i.e., $PI \ge 7$). Descriptive terms are based on direct measure or correlation to the Standard Penetration Test N-value as determined by ASTM D1586-84, as follows. SILT soils with low to non-plastic behavior (i.e., PI < 7) may be classified using relative density.

Consistency		Unconfined Compressive Strength		
Term	SPT N-value	tsf	kPa	
Very soft	Less than 2	Less than 0.25	Less than 24	
Soft	2 – 4	0.25 - 0.5	24 – 48	
Medium stiff	5 – 8	0.5 - 1.0	48 – 96	
Stiff	9 – 15	1.0 - 2.0	96 – 192	
Very stiff	16 - 30	2.0 - 4.0	192 – 383	
Hard	Over 30	Over 4.0	Over 383	

Soil Descriptions

Coarse - Grained Soils (less than 50% fines)

Coarse-grained soil descriptions, i.e., SAND or GRAVEL, are based on the portion of materials passing a 3-inch (75mm) sieve. Coarse-grained soil group symbols are applied in accordance with ASTM D2488-06 based on the degree of grading, or distribution of grain sizes of the soil. For example, well-graded sand containing a wide range of grain sizes is designated SW; poorly graded gravel, GP, contains high percentages of only certain grain sizes. Terms applied to grain sizes follow.

Material NAME	Particle Diameter		
	Inches	Millimeters	
SAND (SW or SP)	0.003 - 0.19	0.075 – 4.8	
GRAVEL (GW or GP)	0.19 – 3	4.8 – 75	
Additional Constituents:			
Cobble	3 – 12	75 – 300	
Boulder	12 – 120	300 – 3050	

The primary soil type is capitalized, and the fines content in the soil are described as indicated by the following examples. Percentages are based on estimating amounts of fines, sand, and gravel to the nearest 5 percent. Other soil mixtures will have similar descriptive names.

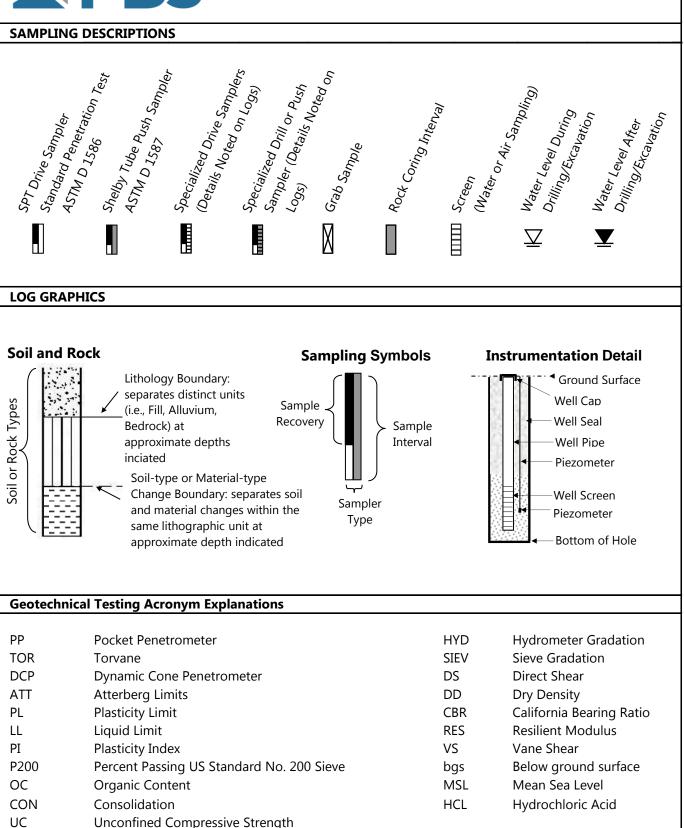
Example: Coarse-Grained Soil Descriptions with Fines

>5% to < 15% fines (Dual Symbols)	≥15% to < 50% fines
Well graded GRAVEL with silt: GW-GM	Silty GRAVEL: GM
Poorly graded SAND with clay: SP-SC	Silty SAND: SM

Additional descriptive terminology applied to coarse-grained soils follow.

Example: Coarse-Grained Soil Descriptions with Other Coarse-Grained Constituents

Coarse-Grained Soil Conta	aining Secondary Constituents
With sand or with gravel	\geq 15% sand or gravel
With cobbles; with boulders	Any amount of cobbles or boulders.


Cobble and boulder deposits may include a description of the matrix soils, as defined above.

Relative Density terms are applied to granular, non-plastic soils based on direct measure or correlation to the Standard Penetration Test N-value as determined by ASTM D1586-84.

Relative Density Term	SPT N-value
Very loose	0 – 4
Loose	5 – 10
Medium dense	11 - 30
Dense	31 – 50
Very dense	> 50

Table A-2 Key To Test Pit and Boring Log Symbols

			HAYDEN WALLA			OTTON		TEST PIT TP-1
		PBS	PBS		ECT 4203.	NUMBE 000	R:	APPROX. TEST PIT TP-1 LOCATION: (See Site Plan) Lat: 46.026282 Long: -118.31048
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCR Lines representing the interface be differing description are approxima between samples, and may indicat	etween soil/rock units of te only, inferred where e gradual transition.	DEPTH	TESTING	SAMPLE TYPE SAMPLE ID	DYNAMIC CONE PENETROMETER STATIC PENETROMETER MOISTURE CONTENT % 50 11	COMMENTS Surface Conditions: Wheat Field
—0.0 —	<u>x 1,</u> 1 <u>/</u> . <u>x 1</u> ,	TILL ZONE; dark brown SI roots and root fragments	LT (ML) with	0.0				
2.0 -		Stiff, dark brown SILT (ML) non-plastic; fine sand; dry) with sand;	1.5	PP	<u>ې</u> 2		PP = 1.25 tsf
4.0 -		becomes light brown; str	ong HCI reaction	-	PP	52 S-2		PP = 1.5 tsf
6.0 -				-				
- 8.0 –				-				
- 10.0 		becomes olive-brown		-				
- 12.0 –		Final depth 12.0 feet bgs; t with excavated material to surface. Groundwater not e time of exploration.	existing ground		PP	8. 🛛		PP = 2 tsf
- 14.0 				-				
- 16.0 -				-				
- 18.0 - -				-				
20.0 -								00
.OGGED COMPLE							en and Nelson, Inc.): CAT 314 with 42" Buo	ket FIGURE A

TEST PIT LOG - 1 PER PAGE HD/4203.000_TP1-30_20190311.GPJ PBS_DATATMPL_GEO.GDT PRINT DATE: 3/28/19:RPG

		DDC	HAYDEN WALLA					TEST PIT TP-2
2		PBS	PBS	S PROJ HDJ4	ECT I 1203.0		R:	APPROX. TEST PIT TP-2 LOCATION: (See Site Plan) Lat: 46.026927 Long: -118.310178
DEPTH FEET			tween soil/rock units of te only, inferred where	DEPTH	TESTING	SAMPLE TYPE SAMPLE ID	 DYNAMIC CONE PENETROMETE STATIC PENETROMETE MOISTURE CONTENT % 	E ER ER ER Surface Conditions: Wheat Field
0.0 - -	<u>11</u> 11 11 11 11 11 11 11 11 11 11 11	TILL ZONE; dark brown SI roots and root fragments	•	0.0 			0 50	100
2.0		Stiff, dark brown SILT (ML) plasticity; fine sand; moist) with sand ;low	2.5	PP	રું 🕅		PP = 1.25 tsf
4.0		becomes very stiff, brow	n	_	P200 PP	2 2	•	P200 = 82% PP = 2.25 tsf Infiltration testing completed at 5.5 feet bgs
6.0 — - -		white disseminated ash t	o 12 feet bgs					
8.0 — - -								
10.0				_				
12.0 — - -		Brown, gravelly SILT (ML) low plasticity; coarse, subre trace limonite staining; dry	with cobbles; bunded gravel;	- <u>-</u> 12.0		8		
14.0 — - -	0,020,000,0	Brown, poorly graded SAN silt, gravel, and cobbles; no medium sand; coarse, sub dry	on-plastic; fine to					
16.0 — - -		Final depth 16.0 feet bgs; t with excavated material to surface. Groundwater not e time of exploration.	existing ground					
18.0 — - -								
20.0 -							D 50	100
LOGGED							en and Nelson, Inc.): CAT 314 with 42"	Bucket FIGURE A2

TEST PIT LOG - 1 PER PAGE HD/4203.000_TP1-30_20190311.GPJ PBS_DATATMPL_GEO.GDT PRINT DATE: 3/28/19:RPG

		DDC	HAYDEN WALL/	I HOME A WALL				TEST PIT TP-3
		PBS	PBS	S PROJ HDJ4	ECT 1203.		R:	APPROX. TEST PIT TP-3 LOCATION: (See Site Plan) Lat: 46.027131 Long: -118.310878
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCRI Lines representing the interface be differing description are approximal between samples, and may indicate	tween soil/rock units of	DEPTH	TESTING	SAMPLE TYPE SAMPLE ID	 DYNAMIC CONE PENETROMETER STATIC PENETROMETER MOISTURE CONTENT % 50 	COMMENTS Surface Conditions: Wheat Field
-0.0	<u>x 1</u> y. 1y . <u>x 1</u>	TILL ZONE; dark brown SII roots and root fragments	LT (ML) with	0.0				
2.0 -		Stiff, dark brown SILT (ML) non-plastic; fine sand; dry	with sand;	1.5 	PP	بې 🕅		PP = 1.5 tsf
 4.0 		becomes light brown		-	PP	S-2		PP = 1.5 tsf
6.0 -				-				
- 8.0 – -				-				
10.0 -		thin (<1mm), interbeddec	l ash lenses	-				
- - - - -		Final depth 12.0 feet bgs; to with excavated material to e surface. Groundwater not e time of exploration.	est pit backfilled existing ground	12.0		% ₹		
- 14.0 	-			-				
- 16.0 – -				-				
- - 18.0 - -	-			-				
20.0 -	1						D 50 1	00
.OGGED COMPLE						SY: Brade	en and Nelson, Inc.): CAT 314 with 42" Bu	FIGURE A

		DDC	HAYDEI WALL	N HOME A WALL				TEST PIT TP-4
				S PROJ HDJ4			:R:	APPROX. TEST PIT TP-4 LOCATION: (See Site Plan) Lat: 46.026864 Long: -118.31179
EPTH FEET	GRAPHIC LOG	MATERIAL DESCR Lines representing the interface be differing description are approximal between samples, and may indicat	tween soil/rock units of	DEPTH	TESTING	SAMPLE TYPE SAMPLE ID	DYNAMIC CONE PENETROMETER STATIC PENETROMETER MOISTURE CONTENT % 50 11	COMMENTS Surface Conditions: Wheat Field
-0.0	<u>x 1,</u> . 1,	TILL ZONE; dark brown SI roots and root fragments	LT (ML) with	0.0				
2.0 -		Stiff, dark brown SILT (ML) non-plastic; fine sand; dry	with sand;	- - - - - -	PP	2		PP = 1.75 tsf
4.0 -		becomes light brown		-	PP	53		PP = 1.5 tsf
6.0 -				_				
- - 8.0 -				-				
10.0 -	-	thin (<1mm to 10mm), in lenses	terbedded ash	-				
- - - - - - -		becomes light olive brow fine to medium sand Final depth 12.0 feet bgs; t with excavated material to surface. Groundwater not e time of exploration.	est pit backfilled existing ground	- - - - - -		X X		
14.0 — -	-			-				
- 16.0 -	-			-				
- - 18.0 - -	-							
20.0 -								00
OGGED OMPLE							en and Nelson, Inc.): CAT 314 with 42" Buo	ket FIGURE A

			HAYDEI WALL	n home .a wall				TEST PIT TP-5
		PBS	PB	S PROJ HDJ4	ECT 4203.0		ER:	APPROX. TEST PIT TP-5 LOCATION: (See Site Plan) Lat: 46.026464 Long: -118.313295
DEPTH FEET	Lines representing the interface between soil/r differing description are approximate only. infer		etween soil/rock units of	DEPTH	TESTING	SAMPLE TYPE SAMPLE ID	 ◆ DYNAMIC CONE PENETROMETER ▲ STATIC PENETROMETER ● MOISTURE CONTENT % 	COMMENTS Surface Conditions: Wheat Field
0.0 	$=\frac{\sqrt{1/2}}{\sqrt{1/2}}$	TILL ZONE; dark brown SI roots and root fragments	-	- 0.0			0 50	100
2.0 -		Very stiff, dark brown SILT non-plastic; fine sand; dry	(ML) with sand;	2.3 2	PP	بن [X]		PP = 1.25 tsf
- 4.0 -		becomes light brown		-	P200 PP	22	•	P200 = 78% PP = 3.5 tsf Infiltration testing completed at 5.5 feet
- 6.0 — -				-				bgs
- - 8.0 -				-				
- 10.0				-				
- 12.0 — -		Final depth 11.5 feet bgs; t with excavated material to surface. Groundwater not e time of exploration.	existing ground	11.5 - -		N.S.		
				-				
- 16.0 -	-							
- - 18.0 - -	-			-				
20.0 -							0 50	100
OGGED							en and Nelson, Inc. D: CAT 314 with 42" E	Bucket FIGURE A

TEST PIT LOG - 1 PER PAGE HD/4203.000_TP1-30_20190311.GPJ PBS_DATATMPL_GEO.GDT PRINT DATE: 3/28/19:RPG

			HAYDEN I WALLA					TEST PIT TP-6
		PBS	PBS		ECT 1203.	NUMBE 000	R:	APPROX. TEST PIT TP-6 LOCATION: (See Site Plan) Lat: 46.027315 Long: -118.313238
EPTH FEET	GRAPHIC LOG	MATERIAL DESCR Lines representing the interface be differing description are approxima between samples, and may indicat	tween soil/rock units of te only, inferred where	DEPTH	TESTING	SAMPLE TYPE SAMPLE ID	DYNAMIC CONE PENETROMETER STATIC PENETROMETER MOISTURE CONTENT % 0 50 10	COMMENTS Surface Conditions: Wheat Field
0.0 - 2.0		TILL ZONE; dark brown SI roots and root fragments	LT (ML) with	0.0				
-		Very stiff, dark brown SILT non-plastic; fine sand; dry	(ML) with sand;	- 2.5 - -	PP	<u>8</u> 2		PP = 3.75 tsf
4.0		becomes light brown, wit lenses	h thin (<1mm) ash	-	PP	5 X		PP = 2.0 tsf
6.0 — - -				-		<u>کی</u> گ		
8.0				-				
10.0 — - -		thin (<1mm), interbedded	h oxidized/stained	-				
- 12.0 — -		pore spaces, calcareous		- 13.0		S-5		Slight caving at 13 feet
- 14.0 — -		Final depth 13.0 feet bgs; t with excavated material to surface. Groundwater not e time of exploration.	existing ground	-				Cingini Caving at 19 ICCI
- -				-				
18.0 - -				-				
20.0 —		Grant					0 50 10 en and Nelson, Inc.	" FIGURE A

PORT	-			HAYDEN WALL/	N HOME A WALL				TEST PIT TP-7
BENTH REFT B MATERIAL DESCRIPTION user aqueering is intrifice bolieve to the of others description at approximation of present element others description at approximation of present element of the other set of the other set of the other set of the others description at approximation of present element of the other set of the othe other set of the other set of the othe other set of the			LR2	РВ				R:	, , , , , , , , , , , , , , , , , , ,
2.0 2.1 TLL 20NE; dark brown SILT (ML) with roots and root fragments 00 2.0 2.2 2.2 2.2 4.0 Very stiff, dark brown SILT (ML); non-plastic; dry 2.8 4.0 becomes stiff, light brown 2.8 6.0 Itin (<1mm), interbedded ash lenses to -6 1.0 6.0 Itin (<1mm), interbedded ash lenses to -6 1.0 10.0 Final depth 12.5 feet bgs; test pit backfilled with excaved material to existing ground suffice. Groundwater not encountered at time of exploration. 12.5 10.0 Final depth 12.5 feet bgs; test pit backfilled with excaved material to existing ground suffice. Groundwater not encountered at time of exploration. 12.5	FEET	GRAPHIC LOG	Lines representing the interface be differing description are approxima	tween soil/rock units of te only, inferred where	DEPTH	TESTING	SAMPLE TYPE SAMPLE ID	PENETROMETER STATIC PENETROMETER MOISTURE CONTENT %	COMMENTS Surface Conditions: Wheat Field
4.0 - 28 28 PP 37 4.0 - - - PP 37 0.0 - - - - 0.0 - - - - 0.0 - - - - 0.0 - - - - 0.0 - - - - 0.0 - - - - 10.0 - - - - 10.0 - - - - 10.0 - - - - 10.0 - - - - 10.0 - - - - 10.0 - - - - 10.0 - - - - 10.0 - - - - 10.0 - - - - 10.0 - - - - 10.0 - - - - 10.0 - - - - 10.0 - - - - 10.0 - - <td< td=""><td>-0.0</td><td></td><td></td><td>LT (ML) with</td><td>0.0 </td><td></td><td></td><td></td><td></td></td<>	-0.0			LT (ML) with	0.0 				
4.0 - 4.0 -	2.0 -				- 28	PP	<u>7</u>		PP = 3.0 tsf
6.0 7.0 7.0	4.0 -		non-plastic; dry		_	PP	M٩		PP = 2.0 tsf
becomes brown, with oxidation/staining; fine to medium sand Final depth 12.5 feet bgs; test pit backfilled with excavated material to existing ground surface. Groundwater not encountered at time of exploration.	- - 6.0 —		thin (<1mm), interbedded		5 - -		ώ		
becomes brown, with oxidation/staining; fine to medium sand 12.0 Final depth 12.5 feet bgs; test pit backfilled with excavated material to existing ground surface. Groundwater not encountered at time of exploration. 18.0 18.0 10.0	- - 8.0 –				-				
fine to medium sand 12.0 Final depth 12.5 feet bgs; test pit backfilled with excavated material to existing ground surface. Groundwater not encountered at 14.0 16.0<	- - 10.0 –				-				
with excavated material to existing ground surface. Groundwater not encountered at time of exploration.	- - 12.0 – -		fine to medium sand		- - 		S. []		
	- - 14.0		with excavated material to surface. Groundwater not e	existing ground	-				
	- 16.0 -				-				
	- 18.0 — -				-				
OGGED BY: C. Grant EXCAVATED BY: Braden and Nelson, Inc. FIGURE A	20.0 -								00

		DDC	HAYDEN WALL/	N HOME A WALL				TEST PIT TP-8
		PBS	PBS	S PROJ HDJ4			R:	APPROX. TEST PIT TP-8 LOCATION: (See Site Plan) Lat: 46.02854 Long: -118.315577
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCRI Lines representing the interface be differing description are approximat between samples, and may indicate	tween soil/rock units of e only, inferred where	DEPTH	TESTING	SAMPLE TYPE SAMPLE ID	 DYNAMIC CONE PENETROMETER STATIC PENETROMETER MOISTURE CONTENT % 50 1 	COMMENTS Surface Conditions: Wheat Field
-0.0	<u>, 1,</u> 1, , 1,	TILL ZONE; dark brown SII roots and root fragments	_T (ML) with	0.0				
-				_ _ 				
2.0		Very stiff, dark brown SILT non-plastic; fine sand; dry	(ML) with sand;	-	PP	ب ر []		PP = 3.0 tsf
4.0		becomes stiff, light browr to 11 feet bgs	n to gray; with ash	ן 	PP	5 5		PP = 1.25 tsf
6.0				-		₹3 }		
- 8.0 — -				-				
- - 10.0 —				-				
- - 12.0 —		becomes brown, with gra low plasticity; small (<1m	y clay nodules; m) vesicles	-		∑ 5		
-				_		8-52 8-72		
- 14.0 — -		becomes dark brown, wit oxidation/staining; moist	h	-		જુ જુ		
- - 16.0 - -		Dark brown, gravelly SILT (low to medium plasticity; fir sand; fine to coarse, subrou moist	e to coarse			∑ 2:5		
- - 18.0 -	-	Final depth 16.5 feet bgs; to with excavated material to e surface. Groundwater not e time of exploration.	existing ground					
- 20.0	1) 50 1	00
OGGED						BY: Brade	en and Nelson, Inc.): CAT 314 with 42" Bud	FIGURE A

PBS PROJECT MUMBER: HU2203000 Comparing the interface between solutions the of comparing the interface be			DDC	HAYDEN WALLA	N HOME				TEST PIT TP-9
PEPTH FEET B B B B B B B B B B B B B COMMENTS 0.0 1 TILL ZONE: (dark brown SILT (ML) with sand; 10 10			PB 5	PBS					, ,
100 STLL ZONE: dark brown SILT (ML) with rots and root fragments 15 PP 37 200 Very stiff, dark brown SILT (ML) with sand; non-plastic; fine sand; dry 15 PP 37 40 Dark brown, siliy SAND (SM) with ash. non-plastic; fine sand; calcite stringers; strong HCL reaction, dry 40 37 60 Dark brown, sandy SILT (ML); non-plastic; fine sand; dry 40 37 60 Dark brown, sandy SILT (ML); non-plastic; fine sand; dry 50 60 Dark brown, sandy SILT (ML); non-plastic; fine sand; dry 50 60 Dark brown, sandy SILT (ML); non-plastic; fine sand; dry 50 100 Dark brown, sandy SILT (ML); non-plastic; fine sand; dry 50 100 Dark brown SILT (ML); low plasticity moist 50 110 Dark brown SILT (ML); low plasticity moist 50 111 Dark brown site to existing ground surface. Groundwater not encountered at time of exploration. 50 110 Site of exploration. 51	FEET	GRAPHIC LOG	Lines representing the interface be	tween soil/rock units of	DEPTH	TESTING	SAMPLE TYPE SAMPLE ID	PENETROMETER STATIC PENETROMETER MOISTURE CONTENT %	COMMENTS Surface Conditions: Wheat Field
20 Very stir, dark brown SILT (ML) with san; non-plastic; fine sand; dry PP Image: Comparison of the sand; dry 4.0 Dark brown, silty SAND (SM) with ash; non-plastic; fine sand; calcite stringers; strong HCL reaction; dry 4.0 Image: Comparison of the sand; dry 8.0 Dark brown, sandy SILT (ML); non-plastic; fine sand; dry 0.0 100 100 12.0 Dark brown SILT (ML); non-plastic; fine sand; dry 100 100 12.0 Dark brown SILT (ML); non-plastic; fine sand; dry 100 12.0 Final depth 12.5 feet bgs; test pit backfilled surface. Groundwater not encountered at time of exploration. 12.0 14.0 Image: Comparison of the same of the surface of the surface of the same of the same of the same of the surface of the same	-0.0		roots and root fragments		_				
12.0 Dark brown, sandy SiLT (ML); non-plastic; fine sand; acid calculate stringers; strong HCL reaction; dry 8.0 10.0 12.0 Dark brown, sandy SiLT (ML); non-plastic; fine sand; dry 10.0 12.0 Enal depth 12.5 feet bgs; test pit backfilled with excavated material to existing ground string or fine sand; dry 14.0 Final depth 12.5 feet bgs; test pit backfilled with excavated material to existing ground string. 16.0 18.1 18.1 18.2 18.2 18.2 18.2 18.2 18.3 18.4 18.4 18.5 18.5 18.5 18.5 18.6 18.6 18.7 18.7 18.7 18.7 18.7 18.7 18.8 18.7 18.7 18.7 18.7 18.7 18.7 18.8 18.7 </td <td>2.0 -</td> <td></td> <td>Very stiff, dark brown SILT non-plastic; fine sand; dry</td> <td>(ML) with sand;</td> <td>_</td> <td></td> <td>22</td> <td></td> <td>PP = 3.0 tsf</td>	2.0 -		Very stiff, dark brown SILT non-plastic; fine sand; dry	(ML) with sand;	_		22		PP = 3.0 tsf
8.0 Dark brown, sandy SILT (ML); non-plastic; 0.0 12.0 Dark brown SILT (ML); low plasticity; moist 12.0 12.0 Final depth 12.5 feet bgs; test pit backfilled 12.5 14.0 Final depth 12.6 feet bgs; test pit backfilled 12.5 14.0 Final depth 12.6 feet bgs; test pit backfilled 12.5 18.0 Final depth 12.6 feet bgs; test pit backfilled 12.5 14.0 Final depth 12.6 feet bgs; test pit backfilled 12.5 14.0 Final depth 12.6 feet bgs; test pit backfilled 12.5 14.0 Final depth 12.6 feet bgs; test pit backfilled 12.5 14.0 Final depth 12.6 feet bgs; test pit backfilled 12.5 14.0 Final depth 12.6 feet bgs; test pit backfilled 12.5 14.0 Final depth 12.6 feet bgs; test pit backfilled 12.5 14.0 Final depth 12.6 feet bgs; test pit backfilled 12.5 14.0 Final depth 12.6 Final depth 12.6 16.0 Final depth 12.6 Final depth 12.6 18.0 Final depth 12.6 Final depth 12.6 18.0 Final depth 12.6 Final depth 12.6 19.0 Final depth 12.6 Final depth 12.6 10.0 Final depth 12.6 Final depth 12.6 10.0 Final depth 12.6 <td>4.0 -</td> <td></td> <td>non-plastic; fine sand; calc</td> <td>M) with ash; ite stringers;</td> <td> 4.0</td> <td></td> <td>83 ⊠</td> <td></td> <td></td>	4.0 -		non-plastic; fine sand; calc	M) with ash; ite stringers;	4.0		83 ⊠		
Dark brown, sandy SiL1 (ML); non-plastic; fine sand; dry 10.0 Image: Constraint of the sand; dry 12.0 Dark brown SiLT (ML); low plasticity; moist 12.0 Final depth 12.5 feet bgs; test pit backfilled with excavated material to existing ground surface. Croundwater not encountered at time of exploration. 14.0 Image: Constraint of the same o	6.0 -				-				
Final depth 12.5 feet bgs; test pit backfilled with excavated material to existing ground surface. Groundwater not encountered at time of exploration.			Dark brown, sandy SILT (N fine sand; dry	IL); non-plastic;	8.0				
Final depth 12.5 feet bgs; test pit backfilled with excavated material to existing ground surface. Groundwater not encountered at time of exploration.	12.0 -		Dark brown SILT (ML); Iow	plasticity; moist		P200	XX	•	P200 = 92%
	14.0 -	-	with excavated material to surface. Groundwater not e	existing ground	12.5 				
	16.0 -	-			-				
	18.0 -	-			-				
] Grant						FIGURE AS

			WALLA			OTTON ASHING			TEST PIT TP-10
		PBS	PBS	PBS PROJECT NUMBER: HDJ4203.000					APPROX. TEST PIT TP-10 LOCATION: (See Site Plan)
	1 1						A	10.0015	Lat: 46.028714 Long: -118.317249
)EPTH FEET	GRAPHIC LOG	MATERIAL DESCR Lines representing the interface be differing description are approxima	tween soil/rock units of te only, inferred where	DEPTH	TESTING	SAMPLE TYPE SAMPLE ID	STATIO	ROMETER C IROMETER URE	COMMENTS Surface Conditions: Wheat Field
-0.0-	<u>, 1, 1, 1</u>	between samples, and may indicat	e gradual transition.	0.0		δ (
		TILL ZONE; dark brown SI roots and root fragments	LT (ML) WIT	-					
2.0 -	i,, i,			Γ.	PP	N 22			PP = 1.75 tsf
4.0 -		Stiff, dark brown SILT (ML) non-plastic; fine to medium roots; dry) with sand; i sand; trace	- 2.5 - -					
4.0 -		becomes brown to light t encountered	prown; one cobble	-	PP	5° [PP = 1.0 tsf
6.0 -				_					
8.0 -				_					
10.0 -				-					
		small (<1mm) vesicles; c strong HCL reaction	alcite stringers;	-					
12.0 -	-	Final depth 12.5 feet bgs; t with excavated material to surface. Groundwater not e	existing ground	12.5 		N 23			
14.0 -	-	time of exploration.							
16.0 -	-			-					
18.0 -				-					
10.0 -				_					
				_					
20.0 -						() F	50 10	0

		DDC	HAYDEN HOMES - COTTONWOOD WALLA WALLA, WASHINGTON				TEST PIT TP-11	
\geq	PBS PE			S PROJE HDJ4			R:	APPROX. TEST PIT TP-11 LOCATION: (See Site Plan) Lat: 46.029653 Long: -118.317072
DEPTH FEET BOT		MATERIAL DESCR Lines representing the interface be differing description are approxima between samples, and may indicat	tween soil/rock units of te only, inferred where	DEPTH	TESTING	SAMPLE TYPE SAMPLE ID	DYNAMIC CONE PENETROMETER STATIC PENETROMETER MOISTURE CONTENT % 50 11	COMMENTS Surface Conditions: Wheat Field
0.0 - 2.0 - -		TILL ZONE; dark brown SI roots and root fragments Dark brown, silty SAND (SI fine to medium sand; dry		0.0 - - 1.5 - 1.5 		بر 🛛		
4.0 - - 6.0		Stiff, brown SILT (ML) with gray clay nodules; non-plas dry	sand, ash, and stic; fine sand;	- 4.0 	PP	S-2		PP = 1.5 tsf
8.0 - - - - - 10.0 -				-				
- - 12.0 – -		becomes dark brown; lov	v plasticity; moist	-		\$3 ∑		Caving from 12 to 16 feet bgs
- 14.0 -		Brown-gray, lean CLAY (Cl oxidation/staining; medium	_) with plasticity; wet	- 14.0 - -				♦ 02/27/19 Seepage at 14 to 16 feet bgs
- 16.0 18.0		Dark brown, gravelly SILT low to medium plasticity; fir sand; fine to coarse, subro moist Final depth 16.5 feet bgs; t with excavated material to surface.	est pit backfilled	- 		∑ 2		
	-	sunace.		-			D 50 10	00
) GGGED OMPLE							en and Nelson, Inc.): CAT 314 with 42" Bud	ket FIGURE A1

TEST PIT LOG - 1 PER PAGE HD/4203.000 TP1-30_20190311.GPJ PBS_DATATMPL_GEO.GDT PRINT DATE: 3/28/19:RPG

-		DDC	HAYDEN HOMES - COTTONWOOD WALLA WALLA, WASHINGTON PBS PROJECT NUMBER: HDJ4203.000			TEST PIT TP-12			
		PBS					R:		APPROX. TEST PIT TP-12 LOCATION: (See Site Plan) Lat: 46.030026 Long: -118.315404 COMMENTS Surface Conditions: Wheat Field
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPTION Lines representing the interface between soil/rock units o differing description are approximate only, inferred where between samples, and may indicate gradual transition.		DEPTH	TESTING	SAMPLE TYPE SAMPLE ID	DYNAMIC CONE PENETROMETER STATIC PENETROMETER MOISTURE CONTENT % 0 50 10		
0.0		TILL ZONE; dark brown SIL roots and root fragments	T (ML) with	0.0					
2.0 -		Stiff, brown to light brown S sand; non-plastic; fine to me	ILT (ML) with	3.0	PP	<u>8</u> 2			PP = 1.5 tsf
4.0 -	-	sand; non-plastic; fine to me calcite stringers; strong HCI	edium sand; _ reaction; dry	-	PP	% %			PP = 1.5 tsf
6.0				-					
8.0 –				-					
10.0 -	-			_					
- 12.0 – -		Final depth 12.0 feet bgs; te with excavated material to e surface. Groundwater not en time of exploration.	existing ground	- 		ۍ ۲			
14.0 -	-			-					
16.0 -				-					
- 18.0 - - -	-			-					
20.0 -								50 10	
LOGGED							en and Nels D: CAT 314	on, Inc. with 42" Buc	ket FIGURE A12

TEST PIT LOG - 1 PER PAGE HDJ4203.000 TP1-30_20190311.GPJ PBS_DATATMPL_GEO.GDT PRINT DATE: 3/28/19:RPG

			HAYDEN HOMES - COTTONWOOD WALLA WALLA, WASHINGTON			TEST PIT TP-13		
		PBS	PB	S PROJ HDJ4			R:	APPROX. TEST PIT TP-13 LOCATION: (See Site Plan) Lat: 46.02888 Long: -118.314192
DEPTH		MATERIAL DESCR Lines representing the interface be differing description are approxima between samples, and may indicat	etween soil/rock units of ate only, inferred where	DEPTH	TESTING	SAMPLE TYPE SAMPLE ID	DYNAMIC CONE PENETROMETER STATIC PENETROMETER MOISTURE CONTENT % 50 11	COMMENTS Surface Conditions: Wheat Field
-0.0	- <u>17</u> - <u>1</u> 7 -	TILL ZONE; dark brown SI roots and root fragments	LT (ML) with	0.0				
- 2.0 –		Stiff, light brown SILT (ML)	with sand:	2.5	PP	<u>ب</u> و []		PP = 1.25 tsf
- 4.0		non-plastic; fine to medium stringers; strong HCL react	sand: calcite	-	PP	S []		PP = 1.75 tsf
- 6.0		calcite stringers		-				
- 8.0 —				-				
- 10.0 -				-				
- - - - -		Final depth 12.0 feet bgs; t with excavated material to surface. Groundwater not e time of exploration.	existing ground	- - 12.0 - -		5. K		
- 14.0 — -	-			-				
- 16.0 –	-			-				
- 18.0 — -								
- 20.0				_			0 50 10	
) GGGED OMPLE							en and Nelson, Inc.): CAT 314 with 42" Buo	cket FIGURE A1 Page 1 of 1

-			HAYDEI WALL	n home A Wall					TEST PIT TP-14		
		PBS	PB	S PROJ HDJ	ECT I 4203.		R:		APPROX. TEST PIT TP-14 LOCATION: (See Site Plan) Lat: 46.029218 Long: -118.313054		
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCR Lines representing the interface be differing description are approxima between samples, and may indica	tween soil/rock units of te only, inferred where	DEPTH	TESTING	SAMPLE TYPE SAMPLE ID	STATIC PENET MOIST CONTE	ROMETER C IROMETER URE	COMMENTS Surface Conditions: Wheat Field		
0.0 	$=\frac{1}{1/2} \cdot \frac{1}{2\sqrt{1/2}} \cdot$	TILL ZONE; dark brown SI roots and root fragments		0.0 							
2.0 -				- 3.0	P200 PP	<u>v</u> 7	•		P200 = 79% PP = 1.25 tsf		
4.0 -		Stiff, brown SILT (ML) with non-plastic; fine sand; dry	sand;	-	PP	2 2			PP = 2.0 tsf		
6.0 -		calcite stringers		-							
- 8.0 —		Light brown SILT (ML) with	sand gravel.	8.5							
- - 10.0		and cobbles; non-plastic; fi sand; fine, subrounded gra stringers; strong HCL reac	ne to medium vel; calcite	-							
- - - - -		Final depth 11.5 feet bgs; t with excavated material to surface. Groundwater not e time of exploration.	existing ground	- 11.5 - -		₩. ₩					
- 14.0 -	-			-							
- 16.0 — -				-							
- 18.0 – -				-							
20.0 -) 5	50 10	00		
OGGED OMPLE							en and Nels	on, Inc. with 42" Buc	ket FIGURE A1		

		DDC	HAYDEI WALL	N HOME A WALL					TEST PIT TP-15
		PBS	РВ	S PROJ HDJ4	ECT I 4203.0		R:		APPROX. TEST PIT TP-15 LOCATION: (See Site Plan) Lat: 46.028088 Long: -118.311411
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCR Lines representing the interface be differing description are approximal between samples, and may indicat	tween soil/rock units of	DEPTH	TESTING	SAMPLE TYPE SAMPLE ID	STATIC PENET MOIST CONTE	Rometer C FROMETER URE ENT %	COMMENTS Surface Conditions: Wheat Field
-0.0-	<u></u>	TILL ZONE; dark brown SI roots and root fragments		0.0					
2.0 -		Medium stiff, dark brown S sand; low plasticity; fine sa	ILT (ML) with nd; moist	- 1.0 - - - -	PP	<u>ર</u> ک			PP = 0.75 tsf
4.0 -		becomes stiff, light brown calcite stringers; dry	n; non-plastic;	-	PP	82 №			PP = 1.5 tsf
6.0 - 8.0 -				-					
10.0 - 12.0 -		becomes brown Final depth 12.0 feet bgs; to with excavated material to surface. Groundwater not e	existing ground	- - - 12.0		X %			
14.0 -	_	time of exploration.		-					
16.0 -	-			-					
18.0 -	-			-					
20.0 -	ח .BA	I Ertel		EXCAVA			en and Nels	50 10 50 10	FIGURE A1
	ETED: 2							with 42" Buc	ket Page 1 of 1

PBS PROJECT NUMBER: Induced control of the Pent Prove Control of the Pent Pent Prove Control of the Pent Pent Pent Pent Pent Pent P			DDC	HAYDEN WALL/	I HOME A WALL					TEST PIT TP-16	
EPTH ET Status MATERIAL DESCRIPTION Line representing its infinite between solition with of detry approximation and approximation of detry approximation of detry approximation of detry approximation approximation approximation of detry approximation of detry approximation			PBS	PBS						, , ,	
10.0 11.1. ZONE: dark brown SLT (ML) with roots and root fragments 03 PP		GRAPHIC LOG	Lines representing the interface be	tween soil/rock units of	DEPTH	TESTING	SAMPLE TYPE SAMPLE ID	PENET STATIC PENET MOISTI CONTE	Rometer Crometer URE SNT %	COMMENTS Surface Conditions: Wheat Field	
4.0 - 4.0 -			TILL ZONE; dark brown SI roots and root fragments	LT (ML) with	- 0.0 - - - -	PP					
8.0 9.0 10.0 Yellow-brown with gray mottles, silty SAND 10.0 Calcite stringers; dry 12.0 Final depth 12.0 feet bgs; test pit backfilled 12.0 Final depth 12.0 feet bgs; test pit backfilled 14.0 10.0 14.0 10.0 14.0 10.0 14.0 10.0 14.0 10.0 14.0 10.0 14.0 10.0 14.0 10.0 14.0 10.0 14.0 10.0 14.0 10.0 14.0 10.0 14.0 10.0 15.0 10.0	4.0) with sand;	3.0 	PP	52			PP = 1.25 tsf	
Yeilow-brown with gray motiles, silty SAND (SM): non-plastic; fine to medium sand; calcite stringers; dry Final depth 12.0 feet bgs; test pit backfilled with excavated material to existing ground surface. Groundwater not encountered at time of exploration. 14.0 18.0 18.0 0 50 10											
Final depth 12.0 feet bgs; test pit backfilled with excavated material to existing ground surface. Groundwater not encountered at time of exploration.			(SM); non-plastic; fine to m	ttles, silty SAND edium sand;	9.0		۲				
	-		with excavated material to surface. Groundwater not e	existing ground			Δ				
	- 16.0 — - -				-						
0 50 100	- 18.0 — - - -				-						
	20.0 -		Frtel							FIGURE A1	

TEST PIT LOG - 1 PER PAGE HDJ4203.000 TP1-30 20190311.GPJ PBS DATATMPL GEO.GDT PRINT DATE: 3/28/19:RPG

			HAYDEI WALL	N HOME A WALL				TEST PIT TP-17
		PBS	PB	S PROJ HDJ4	ECT 4203.		R:	APPROX. TEST PIT TP-17 LOCATION: (See Site Plan) Lat: 46.028948 Long: -118.310639
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCR Lines representing the interface be differing description are approxima between samples, and may indical	etween soil/rock units of te only, inferred where	DEPTH	TESTING	SAMPLE TYPE SAMPLE ID	 ◆ DYNAMIC CONE PENETROMETER ▼ STATIC PENETROMETER ● MOISTURE CONTENT % ○ 50 	COMMENTS
-0.0	<u>×1 17.</u> ×	TILL ZONE; dark brown SI roots and root fragments	LT (ML) with	0.0				
2.0 -		Stiff, brown SILT (ML) with non-plastic; fine to medium stringers; strong HCL react	sand; calcite	2.5	PP	<u> 2</u>		PP = 1.25 tsf
4.0 -				-	PP	55 X		PP = 1.25 tsf
6.0				_				
8.0 - - - -				-				
10.0 - - 12.0		becomes light brown; wit Final depth 12.0 feet bgs; t		- - - - - -		S: N		
- - 14.0 —	-	with excavated material to surface. Groundwater not e time of exploration.	existing ground	-				
- 14.0 - -	-			-				
16.0				-				
- 18.0	-			-				
20.0 -							D 50	100
.OGGED COMPLE							en and Nelson, Inc. D: CAT 314 with 42" E	FIGURE A1 Bucket Page 1 of 1

DEPTH FEET Dependence MATERIAL DESCRIPTION HDJ4203.000 0.0 MATERIAL DESCRIPTION H Dependence Dependence	PPROX. TEST PIT TP-18 LOCATION: (See Site Plan) Lat: 46.029663 Long: -118.310504 COMMENTS Surface Conditions: Wheat Field
0.0 Main Fill ZONE; dark brown SILT (ML) with roots and root fragments 0.0 1.5 Stiff, light brown SILT (ML) with sand; non-plastic; fine sand; calcite stringers; vesicles; strong HCL reaction; dry 1.5 4.0 Image: String HCL reaction; dry Image: String HCL reaction; dry Image: String HCL reaction; dry 6.0 Image: String HCL reaction; dry Image: String HCL reaction; dry Image: String HCL reaction; dry 8.0 Image: String HCL reaction; dry Image: String HCL reaction; dry Image: String HCL reaction; dry 8.0 Image: String HCL reaction; dry Image: String HCL reaction; dry Image: String HCL reaction; dry 10.0 Image: String HCL reaction; dry Image: String HCL reaction; dry Image: String HCL reaction; dry 10.0 Image: String HCL reaction; dry Image: String HCL reaction; dry Image: String HCL reaction; dry	COMMENTS Surface Conditions: Wheat Field
0.0 1.2. 3 TILL ZONE; dark brown SILT (ML) with roots and root fragments 0.0 1.5 1.5 1.5 2.0 1.5 1.5 4.0 1.5 PP 4.0 1.5 PP 0.0 1.5 PP 1.0.0 1.5 PP 1.0.0 1.5 PP </th <th>PP = 2.0 tsf</th>	PP = 2.0 tsf
2.0 - Non-plastic; fine sand; calcite stringers; vesicles; strong HCL reaction; dry 4.0 - H H H H H H H H H H H H H H H H H H	PP = 2.0 tsf
6.0 - White ASH with sand; non-plastic; fine sand; dry 8.0 - Brown SILT (ML) with sand; non-plastic; fine sand; calcite stringers; vesicles; strong HCL reaction; dry	
8.0 Brown SILT (ML) with sand; non-plastic; fine fine sand; calcite stringers; vesicles; strong HCL reaction; dry 10.0	PP = 2.0 tsf
8.0 Brown SILT (ML) with sand; non-plastic; fine sand; calcite stringers; vesicles; strong HCL reaction; dry 10.0 HCL reaction; dry HCL reaction; dry	
14.0 - with fine to medium sand	
16.0 Final depth 16.0 feet bgs; test pit backfilled with excavated material to existing ground surface. Groundwater not encountered at time of exploration.	
20.0	

TEST PIT LOG - 1 PER PAGE HD/4203.000_TP1-30_20190311.GPJ PBS_DATATMPL_GEO.GDT PRINT DATE: 3/28/19:RPG

-			HAYDEN WALL	N HOME A WALL				TEST PIT TP-19
		PBS	PB	S PROJ HDJ4			R:	APPROX. TEST PIT TP-19 LOCATION: (See Site Plan) Lat: 46.03054 Long: -118.311054
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCRI Lines representing the interface be differing description are approximal between samples, and may indicat	tween soil/rock units of e only, inferred where	DEPTH	TESTING	SAMPLE TYPE SAMPLE ID	DYNAMIC CONE PENETROMETER STATIC PENETROMETER MOISTURE CONTENT % 50 11	COMMENTS Surface Conditions: Wheat Field
0.0	<u>x¹ 1/2</u> - 1/2 - <u>x¹ 1/2</u> - <u>x¹ 1/2</u> - x - 1/2 - x	TILL ZONE; dark brown SI roots and root fragments	LT (ML) with	0.0				
2.0		Stiff, brown SILT (ML) with non-plastic; fine sand; dry	sand;	2.5	PP	<u>ب</u> ۲		PP = 1.25 tsf
4.0		with calcite stringers; ves	icles	-	PP	53 ∑		PP = 1.75 tsf
- 6.0				_				
8.0 - - - - 10.0		with fine to medium sand						
- - 12.0 — - -		Final depth 12.0 feet bgs; t with excavated material to surface. Groundwater not e time of exploration.	existing ground	12.0 12.0 		2 2		
14.0	-			_				
- 16.0 -	-							
- 18.0 – -	-			-				
20.0 -				_			0 50 11	
) GGED OMPLE							en and Nelson, Inc.): CAT 314 with 42" Buo	cket FIGURE A1 Page 1 of 1

		DDC	HAYDEN WALL	N HOME A WALL					TEST PIT TP-20			
		PBS	PB	S PROJ HDJ4	ECT 4203.		ER:		APPROX. TEST PIT TP-20 LOCATION: (See Site Plan) Lat: 46.030802 Long: -118.312327			
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPTION Lines representing the interface between soil/rock units o differing description are approximate only, inferred where between samples, and may indicate gradual transition.		between samples, and may indicate gradual transition.		between samples, and may indicate gradual transition.		TESTING	SAMPLE TYPE SAMPLE ID	PENE STATI PENE MOIST CONT	TROMETER URE	COMMENTS Surface Conditions: Wheat Field
0.0	$=\frac{1}{12}\cdot\frac{1}{2}\cdot\frac{1}{2}\cdot\frac{1}{2}$ $=\frac{1}{12}\cdot\frac{1}{2}$	TILL ZONE; dark brown SI roots and root fragments	LT (ML) with	0.0								
2.0 -		Stiff to very stiff, brown SIL sand; non-plastic; fine to m	T (ML) with edium sand; dry	2.5	PP	22			PP = 2.0 tsf			
4.0 -		with calcite stringers; ves	sicles	-	P200 PP	83 ⊠	•		P200 = 72% PP = 2.25 tsf			
6.0 -				-								
- 8.0 - -				-								
10.0 -		Light brown, silty SAND (S fine to medium sand; calcit vesicles; dry	M); non-plastic; e stringers;			M ფ						
- 12.0 – -		Final depth 11.5 feet bgs; t with excavated material to surface. Groundwater not e time of exploration.	existing ground	11.5 - -		N.S.						
- 14.0 - -	-			-								
- 16.0 -	-			-								
18.0 –	-			-								
20.0 -	1						0	50 10	00			
OGGED							en and Nels	on, Inc. with 42" Buc	ket FIGURE A2			

		DDC	HAYDEN WALLA					TEST PIT TP-21
2		PBS	PBS	6 PROJ HDJ4		NUMBE 000	R:	APPROX. TEST PIT TP-21 LOCATION: (See Site Plan) Lat: 46.030829 Long: -118.313863
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCR Lines representing the interface be differing description are approxima between samples, and may indicat	tween soil/rock units of te only, inferred where	DEPTH	TESTING	SAMPLE TYPE SAMPLE ID	 DYNAMIC CONE PENETROMETER STATIC PENETROMETER MOISTURE CONTENT % 50 1 	COMMENTS Surface Conditions: Wheat Field
-0.0	$\frac{\lambda^{1}l_{\chi}}{1}$	TILL ZONE; dark brown SI roots and root fragments	LT (ML) with	0.0				
- 2.0 - - -		Stiff, dark brown SILT (ML) non-plastic; fine sand; dry) with sand;	- - 2.5 -	PP	<u>5</u>		PP = 1.25 tsf
4.0 -		becomes light brown; wit	h calcite stringers		PP	52 X		PP = 1.25 tsf
- 6.0 - - 8.0								
	202020202 ()2020202	Light brown, sandy SILT (N and cobbles; non-plastic; fi sand; fine, subrounded to r calcite stringers; strong HC	ne to medium ounded gravel;	- 9.0 -				
- 12.0 – -		Final depth 11.5 feet bgs; t with excavated material to surface. Groundwater not e time of exploration.	existing ground	11.5 		5. N		
14.0				-				
16.0 - -				-				
- 18.0				-				
20.0 -								00
OGGED OMPLE							en and Nelson, Inc.): CAT 314 with 42" Bu	cket FIGURE A2

			HAYDE WALL	n home .a wall					TEST PIT TP-22
		PBS	PB	S PROJ HDJ4	ECT 1203.		R:		APPROX. TEST PIT TP-22 LOCATION: (See Site Plan) Lat: 46.031265 Long: -118.310826
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCR Lines representing the interface be differing description are approxima between samples, and may indical	tween soil/rock units of	DEPTH	TESTING	SAMPLE TYPE SAMPLE ID	STATIC PENET MOISTI CONTE	Rometer Crometer URE SNT %	COMMENTS Surface Conditions: Wheat Field
0.0 	<u>x¹ 1/2</u> x 1/2 x <u>x¹ 1/2</u>	TILL ZONE; dark brown SI roots and root fragments		0.0					
- 2.0 - -		Very stiff, brown SILT (ML)	with sand:	- 3.0	PP	<u>بې [</u>			PP = 1.0 tsf
- 4.0 -		Very stiff, brown SILT (ML) non-plastic; fine to medium stringers; vesicles; strong I dry	sand; calcite ICL reaction;		PP	× 7			PP = 2.5 tsf
6.0 - -				-					
8.0				-					
10.0 - - 12.0		increased sand Final depth 11.5 feet bgs; t with excavated material to	est pit backfilled existing ground			ۍ ۲۵			
-	-	surface. Groundwater not e time of exploration.	encountered at	-					
- 14.0				-					
- 16.0 	-			-					
- 18.0 — -				-					
20.0 -								50 10	
LOGGED							en and Nelso D: CAT 314	on, Inc. with 42" Buc	ket FIGURE A22

TEST PIT LOG - 1 PER PAGE HDJ4203.000_TP1-30_20190311.GPJ PBS_DATATMPL_GEO.GDT PRINT DATE: 3/28/19:RPG

-		DDC	HAYDEN WALL/	I HOME A WALL					TEST PIT TP-23
		PBS	PBS	S PROJ HDJ4	ECT 4203.		R:		APPROX. TEST PIT TP-23 LOCATION: (See Site Plan) Lat: 46.031767 Long: -118.309887
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCR Lines representing the interface be differing description are approxima between samples, and may indicat	tween soil/rock units of	DEPTH	TESTING	SAMPLE TYPE SAMPLE ID	STATIC PENET MOIST CONTE	Rometer C FROMETER URE ENT %	COMMENTS Surface Conditions: Wheat Field
0.0 - - 2.0	$\frac{\underline{x}^{1}}{2} + \underline{x}^{1}$	TILL ZONE; dark brown SI roots and root fragments Stiff, brown SILT (ML); nor		0.0 1.5	PP				PP = 1.5 tsf
- - 4.0 —	-	Stiff, light brown SILT (ML)	with sand;	4.0	P200 PP	\$2 \$7	•		P200 = 78% PP = 1.0 tsf
- - 6.0 — -		non-plastic; fine to medium stringers; vesicles; strong l dry	sand; calcite ICL reaction;	-					Infiltration testing completed at 5.5 feet bgs
- 8.0 — -				-					
- 10.0 — - -		Final depth 11.0 feet bgs; t with excavated material to	existing ground	- 11.0		₩. ₩			
12.0 — - -	-	surface. Groundwater not e time of exploration.	encountered at	-					
14.0 — - -				-					
16.0 — - -	-			-					
18.0 — - -				-					
20.0 -		Grant					0 5 en and Nels	50 10	FIGURE A2

TEST PIT LOG - 1 PER PAGE HDJ4203.000_TP1-30_20190311.GPJ PBS_DATATMPL_GEO.GDT_PRINT DATE: 3/28/19:RPG

	GRAPHIC CONTRACTOR CONTRACTOR	PBBS MATERIAL DESCRI Lines representing the interface be differing description are approximal between samples, and may indicat TILL ZONE; dark brown SIL roots and root fragments Stiff, dark brown SILT (ML) non-plastic; fine sand; dry	PTION tween soil/rock units of te only, inferred where e gradual transition. LT (ML) with		4203. DNILSEL	SAMPLE TYPE 000 SAMPLE ID 000	 DYNAMIC CONE PENETROMETER STATIC PENETROMETER MOISTURE CONTENT % 	APPROX. TEST PIT TP-24 LOCATION: (See Site Plan) Lat: 46.033491 Long: -118.310195 COMMENTS Surface Conditions: Wheat Field
	<u> 1, 1,</u>	Lines representing the interface be differing description are approximal between samples, and may indicat TILL ZONE; dark brown SII roots and root fragments Stiff, dark brown SILT (ML)	tween soil/rock units of te only, inferred where e gradual transition. LT (ML) with		-	SAMPLE TYPE SAMPLE ID	PENETROMETER STATIC PENETROMETER ● MOISTURE CONTENT %	COMMENTS Surface Conditions: Wheat Field
2.0 - 2.0 -		roots and root fragments Stiff, dark brown SILT (ML)		- 0.0 - -				
		Stiff, dark brown SILT (ML) non-plastic; fine sand; dry		-				
4.0 -			with sand;	2.5	PP	<u>ج []</u>		PP = 1.25 tsf
		becomes light brown; wit sand	h fine to medium	-	PP	8.∑		PP = 1.75 tsf
6.0 -				-				
8.0 -		with calcite stringers; ves reaction	icles; strong HCL	-				
10.0				-				
12.0		Final depth 12.0 feet bgs; to with excavated material to surface. Groundwater not e	existing ground	- 12.0 -		¥.		
- 14.0 — - -		time of exploration.		-				
- 16.0 — -								
- 18.0 — - -				-				
20.0							50 1 0 50 1	FIGURE A24

	ï	DDC	HAYDEN WALLA					TEST PIT TP-25
\geq		PBS	PBS		ECT 4203.	NUMBE 000	:R:	APPROX. TEST PIT TP-25 LOCATION: (See Site Plan) Lat: 46.034389 Long: -118.310209
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCR Lines representing the interface be differing description are approxima between samples, and may indicat	tween soil/rock units of te only, inferred where	DEPTH	TESTING	SAMPLE TYPE SAMPLE ID	 DYNAMIC CONE PENETROMETER STATIC PENETROMETER MOISTURE CONTENT % 	COMMENTS Surface Conditions: Wheat Field
0.0	<u>x1 1/</u>	TILL ZONE; dark brown SI	-	0.0		0		
		roots and root fragments		2.5	PP	<u> </u>		PP = 1.25 tsf
-		Stiff, dark brown SILT (ML) non-plastic; fine to medium	with sand; sand; dry	-				
- 4.0 — -				-	PP	S-2		PP = 1.5 tsf
6.0		becomes light brown; wit vesicles	h calcite stringers,	,				
- 8.0 — -				-				
- 10.0 — -				-	P200	Me		P200 = 87%
- 12.0 — -		Final depth 11.5 feet bgs; t with excavated material to surface. Groundwater not e time of exploration.	existing ground	11.5 		53 K	•	
- 	-			-				
- 16.0 — -	-							
- - 18.0 - -	-			-				
20.0 -								00
LOGGED COMPLE							en and Nelson, Inc. D: CAT 314 with 42" Buo	cket FIGURE A25

TEST PIT LOG - 1 PER PAGE HDJ4203.000_TP1-30_20190311.GPJ PBS_DATATMPL_GEO.GDT_PRINT DATE: 3/28/19:RPG

		DDC	HAYDE WALL	n home .a wall				TEST PIT TP-26		
\geq	PBS PE					NUMBE 000	R:	APPROX. TEST PIT TP-26 LOCATION: (See Site Plan) Lat: 46.034347 Long: -118.311362		
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCR Lines representing the interface be differing description are approxima between samples, and may indicat	tween soil/rock units of te only, inferred where	DEPTH	TESTING	SAMPLE TYPE SAMPLE ID	DYNAMIC CONE PENETROMETER STATIC PENETROMETER MOISTURE CONTENT % 50 1	COMMENTS Surface Conditions: Wheat Field		
0.0	<u>1/</u>	TILL ZONE; dark brown SI roots and root fragments	LT (ML) with	0.0						
2.0 -		Stiff, dark brown SILT (ML) dry	; non-plastic;	- 2.5	PP	<u>ب</u> ۲		PP = 1.25 tsf		
4.0 -		Very stiff, light brown SILT non-plastic; fine to medium stringers; vesicles; strong I dry	sand; calcite	4.0 - -	PP	S-2		PP = 2.75 tsf		
6.0 -				-						
8.0 -				-						
10.0 - - - - - - - - - - - - - - - - - - -		Final depth 11.5 feet bgs; t with excavated material to surface. Groundwater not e time of exploration.	existing ground	- - - - - - - -		N .?				
- 14.0 - -	-									
16.0 -	_			- - -						
- 18.0 -	-			-						
20.0 -							0 50 1 en and Nelson, Inc.			
LOGGED							D: CAT 314 with 42" But	cket FIGURE A26		

TEST PIT LOG - 1 PER PAGE HDJ4203.000_TP1-30_20190311.GPJ PBS_DATATMPL_GEO.GDT PRINT DATE: 3/28/19:RPG

		DDC	HAYDEI WALL	N HOME A WALL					TEST PIT TP-27
		PBS	S PROJ HDJ4			R:	APPROX. TEST PIT TP-27 LOCATION: (See Site Plan) Lat: 46.033895 Long: -118.312842		
EPTH EET	GRAPHIC LOG	MATERIAL DESCR Lines representing the interface be differing description are approxima between samples, and may indical	tween soil/rock units of	DEPTH	TESTING	SAMPLE TYPE SAMPLE ID	STATIC PENE MOIST CONTE	Rometer Crometer URE SNT %	COMMENTS Surface Conditions: Wheat Field
-0.0	<u>x¹ 1₇.</u> 1 ₇ . x 1,	TILL ZONE; dark brown SI roots and root fragments	LT (ML) with	0.0					
- 2.0 — - -		Hard, dark brown SILT (MI non-plastic; fine sand; dry) with sand;	- - - 2.5	PP	<u>v</u> 2			PP = 1.5 tsf
4.0 -		Light brown, sandy SILT (N fine to coarse sand; calcite	/L); non-plastic; stringers;	- - 4.5	PP	83 ∑			PP = 4.5 tsf
6.0 -		vesicles; strong HCL react	ion; dry	_		53 X			
- 8.0				-					
- 10.0 — -				_					
- 12.0 — -		Final depth 12.5 feet bgs; t with excavated material to	est pit backfilled existing ground	_ 					
- 14.0 — -	-	surface. Groundwater not e time of exploration.	encountered at	-					
- 16.0 — - -	-			-					
- 	-			-					
20.0 –]						50 10	00
		. Grant 3/01/19					en and Nels	on, Inc. with 42" Buc	ket FIGURE A2

TEST PIT LOG - 1 PER PAGE HDJ4203.000 TP1-30 20190311.GPJ PBS_DATATMPL_GEO.GDT PRINT DATE: 3/28/19:RPG

	ï	DDC	HAYDEN WALL	N HOME A WALL				TEST PIT TP-28
2		PBS	PB	S PROJ HDJ4	ECT 4203.0		R:	APPROX. TEST PIT TP-28 LOCATION: (See Site Plan) Lat: 46.033719 Long: -118.315281
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCRI Lines representing the interface bet differing description are approximat between samples, and may indicate	ween soil/rock units of	DEPTH	TESTING	SAMPLE TYPE SAMPLE ID	DYNAMIC CONE PENETROMETER STATIC PENETROMETER MOISTURE CONTENT % 50 10	COMMENTS Surface Conditions: Wheat Field
0.0		TILL ZONE; dark brown SIL roots and root fragments Stiff, dark brown SILT (ML) non-plastic; fine sand; dry becomes brown		0.0 - - - 2.5 - - - - - - - - - - -		\$2 \$2	•	P200 = 82% PP = 1.0 tsf Infiltration testing completed at 5 feet bgs
6.0		becomes gray becomes dark brown, with wet	h clay nodules;			S. N		Seepage at 11.5 feet bgs; caving from 11
- - 12.0 — - -		Final depth 12.0 feet bgs; to with excavated material to e surface.	est pit backfilled existing ground	_ 12.0 _ _ _		\$		to 12 feet bgs
14.0 — - -	-			-				
- 16.0 — -	-			-				
- 18.0 — - - 20.0 —	-			-				
LOGGED COMPLE) 50 10 en and Nelson, Inc.): CAT 314 with 42" Buc	D0 FIGURE A28 cket Page 1 of 1

							IWOOD GTON	TEST PIT TP-29			
		PBS	PB	S PROJ HDJ4	ECT 1203.		R:	APPROX. TEST PIT TP-29 LOCATION: (See Site Plan)			
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCR Lines representing the interface be differing description are approxima between samples, and may indical	etween soil/rock units of te only, inferred where	DEPTH	TESTING	SAMPLE TYPE SAMPLE ID	 DYNAMIC CONE PENETROMETER STATIC PENETROMETER MOISTURE CONTENT % 		Lat: 46.033315 Long: -118.3135 COMMENTS Surface Conditions: Wheat Field		
0.0 	$= \frac{\sqrt{1}}{\sqrt{1}} \frac{\sqrt{1}}{\sqrt{1}$	TILL ZONE; dark brown SI roots and root fragments	•	0.0							
2.0		Stiff, brown SILT (ML) with non-plastic; fine to medium	sand; sand; dry	2.5	PP	<u>8</u> 2			PP = 1.5 tsf		
4.0 -		becomes hard, light brow stringers, vesicles, stron	vn; with calcite g HCL reaction	-	PP	S []			PP = 4.5 tsf		
- 6.0 -				-							
- 8.0 — -				-							
- 10.0 -				-							
- 12.0 – -		Final depth 12.0 feet bgs; t with excavated material to surface. Groundwater not e time of exploration.	existing ground	- 		ۍ ۲					
- 14.0 -	-			-							
- 16.0 				-							
- - 18.0 - -											
20.0 -									00		
OGGED							en and Nels D: CAT 314	on, Inc. with 42" Buc	ket FIGURE A2 Page 1 of 1		

			HAYDEN WALL	N HOME A WALL					TEST PIT TP-30		
		PBS	PB	S PROJ HDJ4	ECT I 4203.0		R:		APPROX. TEST PIT TP-30 LOCATION: (See Site Plan)		
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCRI Lines representing the interface be differing description are approximal between samples, and may indicat	tween soil/rock units of e only, inferred where	DEPTH	TESTING	SAMPLE TYPE SAMPLE ID	DYNAMIC CONE PENETROMETER STATIC PENETROMETER MOISTURE CONTENT % 0 50 10		Lat: 46.032942 Long: -118.312139 COMMENTS Surface Conditions: Wheat Field		
0.0 - 2.0 - 4.0 - -		TILL ZONE; dark brown SI roots and root fragments Stiff, light brown SILT (ML) non-plastic; fine sand; calci vesicles; dry	with sand;	0.0 2.5 	P200 PP PP		•		P200 = 78% PP = 1.5 tsf PP = 3.0 tsf		
6.0 - - 8.0 - - - - - - - - - - - - - - - - - -		becomes brown; fine to r strong HCL reaction clay nodules from 7 to 9									
- 14.0 - -		Final depth 12.0 feet bgs; to with excavated material to surface. Groundwater not e time of exploration.	existing ground	- - - - - - - - - -		X X					
- 16.0 — - -	-										
18.0 — - - 20.0 —	-			-							
OGGED						Y: Brad	en and Nels	50 10 on, Inc. with 42" Buc	FIGURE A3		

Appendix B Laboratory Testing

Appendix B: Laboratory Testing

B1 GENERAL

Samples obtained during the field explorations were examined in the PBS laboratory. The physical characteristics of the samples were noted and field classifications were modified where necessary. During the course of examination, representative samples were selected for further testing. The testing program for the soil samples included standard classification tests, which yield certain index properties of the soils important to an evaluation of soil behavior. The testing procedures are described in the following paragraphs. Unless noted otherwise, all test procedures are in general accordance with applicable ASTM standards. "General accordance" means that certain local and common descriptive practices and methodologies have been followed.

B2 CLASSIFICATION TESTS

B2.1 Visual Classification

The soils were classified in accordance with the Unified Soil Classification System with certain other terminology, such as the relative density or consistency of the soil deposits, in general accordance with engineering practice. In determining the soil type (that is, gravel, sand, silt, or clay) the term that best described the major portion of the sample is used. Modifying terminology to further describe the samples is defined in Table A-1, Terminology Used to Describe Soil, in Appendix A.

B2.2 Moisture (Water) Contents

Natural moisture content determinations were made on samples of the fine-grained soils (that is, silts, clays, and silty sands). The natural moisture content is defined as the ratio of the weight of water to dry weight of soil, expressed as a percentage. The results of the moisture content determinations are presented on the logs of the borings in Appendix A and on Figure B1, Summary of Laboratory Data, in Appendix B.

B2.3 Grain-Size Analyses (P200 Wash)

Washed sieve analyses (P200) were completed on samples to determine the portion of soil samples passing the No. 200 Sieve (i.e., silt and clay). The results of the P200 test results are presented on the exploration logs in Appendix A and on Figure B1, Summary of Laboratory Data, in Appendix B.

	D	D	1	SUMMARY OF LABORATORY DATA										
		D)			MES - COTTC ILLA, WASHII		PBS PROJECT NUMBER: HDJ4203.000						
SAN	IPLE INFOF	RMATION		MOIOTUDE	DRY		SIEVE		AT	TERBERG LIM	TS			
EXPLORATION NUMBER	SAMPLE NUMBER	SAMPLE DEPTH (FEET)	ELEVATION (FEET)	MOISTURE CONTENT (PERCENT)	DRY DENSITY (PCF)	GRAVEL (PERCENT)	SAND (PERCENT)	P200 (PERCENT	LIQUID LIMIT (PERCENT)	PLASTIC LIMIT (PERCENT)	PLASTICITY INDEX (PERCENT)			
TP-2	S-2	4.5		20.3				82						
TP-5	S-2	4.5		14.4				78						
TP-9	S-3	12		29.3				92						
TP-14	S-1	2		19.4				79						
TP-20	S-2	4.5		15.0				72						
TP-23	S-2	4		16.1				78						
TP-25	S-3	11		16.7				87						
TP-28	S-2	4		47.9				82						
TP-30	S-1	2		20.0				78						